首页> 外文期刊>IEEE Transactions on Knowledge and Data Engineering >Photo2Trip: Exploiting Visual Contents in Geo-Tagged Photos for Personalized Tour Recommendation
【24h】

Photo2Trip: Exploiting Visual Contents in Geo-Tagged Photos for Personalized Tour Recommendation

机译:photo2trip:在地理标记的照片中利用视觉内容,以获取个性化旅游推荐

获取原文
获取原文并翻译 | 示例

摘要

Recently accumulated massive amounts of geo-tagged photos provide an excellent opportunity to understand human behaviors and can be used for personalized tour recommendation. However, no existing work has considered the visual content information in these photos for tour recommendation. We believe the visual features of photos provide valuable information on measuring user / Point-of-Interest (POI) similarities, which is challenging due to data sparsity. To this end, in this paper, we propose a visual feature enhanced tour recommender system, named 'Photo2Trip', to utilize the visual contents and collaborative filtering models for recommendation. Specifically, we propose a Visual-enhanced Probabilistic Matrix Factorization model (VPMF), which integrates visual features into the collaborative filtering model, to learn user interests by leveraging the historical travel records. We then extend VPMF to End-to-End training framework to incorporate users (POIs) latent factors into the learning process of the visual content of photos, which generalizes the applicability of the proposed VPMF framework in tour recommendation. Extensive empirical studies verify that our proposed visual-enhanced personalized tour recommendation method outperforms other benchmark methods in terms of recommendation accuracy. The results also show that visual features are effective in alleviating the data sparsity and cold start problems on personalized tour recommendation.
机译:最近累计大量的地理标记照片提供了理解人类行为的绝佳机会,可用于个性化旅游推荐。但是,没有现有的工作已经考虑了这些照片中的视觉内容信息进行旅游推荐。我们认为照片的视觉特征提供了有关测量用户/兴趣点(POI)相似性的有价值的信息,这是由于数据稀疏性挑战。为此,在本文中,我们提出了一个名为“Photo2trip”的Visual Feature增强型旅游推荐系统,以利用视觉内容和协作过滤模型来推荐。具体地,我们提出了一种可视化增强的概率矩阵分解模型(VPMF),其将视觉特征集成到协作滤波模型中,通过利用历史旅行记录来学习用户兴趣。然后,我们将VPMF扩展到端到端的培训框架,将用户(POI)潜在的因素纳入照片的视觉内容的学习过程,这概括了拟议的VPMF框架在旅游推荐中的适用性。广泛的实证研究验证了我们所提出的视觉增强个性化旅游推荐方法在推荐准确性方面优于其他基准方法。结果还表明,视觉功能有效地减轻了个性化旅游推荐的数据稀疏和冷启动问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号