首页> 外文期刊>Neurocomputing >Future-data driven modeling of complex backgrounds using mixture of Gaussians
【24h】

Future-data driven modeling of complex backgrounds using mixture of Gaussians

机译:使用高斯混合模型的未来数据驱动的复杂背景建模

获取原文
获取原文并翻译 | 示例

摘要

Mixture of Gaussians (MoG) is well-known for effectively in sustaining background variations, which has been widely adopted for background subtraction. However, in complex backgrounds, MoG often traps in keeping balance between model convergence speed and its stability. The main difficulty is the selection of learning rates. In this paper, an effective learning strategy is proposed to provide better regularization of background adaptation for MoG. First, the video-data is splitted into the future-data and history-data,then a set of background distributions (MoG) is computed for each case. To distinguish between dynamic and static background, the equality of these two sets is tested by the hypothesis testing method. Next, a two-layer LBP-based method is proposed for foreground classification. Finally, the global and static learning rates are replaced by the adaptive learning rates for image pixels with distinct properties for each frame. By means of the proposed learning strategy, a novel background modeling for detecting foreground objects from complex environments is established. We compare our procedure against the state-of-the-art alternatives, the experimental results show that the performance of learning speed and accuracy obtained by proposed learning rate control strategy is better than existing MoG approaches.
机译:高斯混合(MoG)以有效维持背景变化而闻名,已被广泛用于背景减法。但是,在复杂的背景下,MoG经常陷入在模型收敛速度与其稳定性之间保持平衡的陷阱。主要困难是学习率的选择。在本文中,提出了一种有效的学习策略,以为MoG提供更好的背景适应正则化。首先,将视频数据分为未来数据和历史数据,然后针对每种情况计算一组背景分布(MoG)。为了区分动态背景和静态背景,通过假设检验方法检验了这两个集合的相等性。接下来,提出了一种基于两层LBP的前景分类方法。最后,全局和静态学习率被每帧具有不同属性的图像像素的自适应学习率所替代。通过提出的学习策略,建立了一种从复杂环境中检测前景物体的新型背景模型。我们将程序与最先进的替代方法进行了比较,实验结果表明,所提出的学习率控制策略所获得的学习速度和准确性的性能要优于现有的MoG方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号