首页> 外文期刊>Neurocomputing >Data clustering using controlled consensus in complex networks
【24h】

Data clustering using controlled consensus in complex networks

机译:在复杂网络中使用受控共识进行数据聚类

获取原文
获取原文并翻译 | 示例

摘要

Recently, many network-based methods have been developed and successfully applied to cluster data. Once the underlying network has been constructed, a clustering method can be applied over its vertices and edges. In this paper, the concept of pinning control in complex networks is applied to cluster data. Firstly, an adaptive method for constructing sparse and connected networks is proposed. Secondly, a dissimilarity measure is computed via a dynamic system in which vertices are expected to reach a consensus state regarding a reference trajectory. The reference is forced into the system by pinning control. A theoretical analysis was carried out to prove the convergence of the dynamic system under certain parameter constraints. The results using real data sets have showed that the proposed method performs well in the presence of clusters with different sizes and shapes comparing to some well-known clustering methods.
机译:近来,已经开发了许多基于网络的方法并将其成功应用于群集数据。构建了基础网络后,就可以在其顶点和边缘上应用聚类方法。本文将复杂网络中的固定控制概念应用于集群数据。首先,提出了一种构建稀疏连通网络的自适应方法。其次,通过动态系统计算相异度,在该动态系统中,顶点将达到关于参考轨迹的共识状态。通过固定控制将参考强制进入系统。进行了理论分析,证明了在某些参数约束下动态系统的收敛性。使用真实数据集的结果表明,与一些众所周知的聚类方法相比,该方法在存在大小和形状不同的聚类时表现良好。

著录项

  • 来源
    《Neurocomputing》 |2013年第22期|132-140|共9页
  • 作者单位

    Institute of Mathematical Sciences and Computing, University of Sao Paulo, Av. Trabalhador Sao-carlense 400, Sao Carlos, Sao Paulo 13560-970, Brazil;

    Institute of Mathematical Sciences and Computing, University of Sao Paulo, Av. Trabalhador Sao-carlense 400, Sao Carlos, Sao Paulo 13560-970, Brazil;

    Institute of Mathematical Sciences and Computing, University of Sao Paulo, Av. Trabalhador Sao-carlense 400, Sao Carlos, Sao Paulo 13560-970, Brazil;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Data clustering; Network-based learning; Complex networks; Pinning control; Consensus on networks;

    机译:数据聚类;基于网络的学习;复杂的网络;固定控制;网络共识;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号