首页> 外文期刊>Neurocomputing >Robustness analysis for connection weight matrices of global exponential stable time varying delayed recurrent neural networks
【24h】

Robustness analysis for connection weight matrices of global exponential stable time varying delayed recurrent neural networks

机译:全局指数稳定时变时滞递归神经网络的连接权矩阵的鲁棒性分析

获取原文
获取原文并翻译 | 示例

摘要

This paper analyzes the robustness of global exponential stability of delayed recurrent neural networks (DRNNs) subject to parameter uncertainty in connection weight matrices. Given a globally exponentially stable DRNNs, the problem to be addressed herein is how much parameter uncertainty in the connection weight matrices that the neural network can remain to be globally exponentially stable. We characterize the upper bounds of the parameter uncertainty for the DRNNs to sustain global exponential stability. The upper bounds of parameter uncertainty intensity are characterized by using transcendental equations. Moreover, we prove theoretically that, for globally exponentially stable DRNNs, if additive parameter uncertainties in connection weight matrices are smaller than the derived supper bounds arrived at here, then the perturbed DRNNs are guaranteed to also be globally exponentially stable. A numerical example is provided to illustrate the theoretical results.
机译:本文分析了在连接权重矩阵中存在参数不确定性的时滞递归神经网络(DRNN)全局指数稳定性的鲁棒性。给定全局指数稳定的DRNN,这里要解决的问题是神经网络可以保持全局指数稳定的连接权重矩阵中的参数不确定性。我们描述了DRNN维持全局指数稳定性的参数不确定性的上限。使用先验方程来表征参数不确定性强度的上限。此外,我们从理论上证明,对于全局指数稳定的DRNN,如果连接权重矩阵中的加性参数不确定性小于此处得出的导出上限,则可以保证扰动的DRNN也是全局指数稳定的。数值例子说明了理论结果。

著录项

  • 来源
    《Neurocomputing》 |2013年第3期|220-226|共7页
  • 作者

    SongZhu; YiShen;

  • 作者单位

    College of Sciences, China University of Mining and Technology, Xuzhou 221116, China;

    Department of Control Science and Engineering and Engineering and the Key Laboratory of Ministry of Education for Image Processing and Intelligent Control,Huazhong University of Science and Technology, Wuhan 430074, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    recurrent neural networks; global exponential stability; delayed; robustness;

    机译:递归神经网络;全局指数稳定性;时滞;鲁棒性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号