首页> 外文期刊>Circuits, systems, and signal processing >Robustness Analysis for Connection Weight Matrices of Global Exponential Stability of Stochastic Delayed Recurrent Neural Networks
【24h】

Robustness Analysis for Connection Weight Matrices of Global Exponential Stability of Stochastic Delayed Recurrent Neural Networks

机译:随机延迟递归神经网络全局指数稳定性的连接权重矩阵的鲁棒性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we analyze the robustness of global exponential stability of stochastic delayed recurrent neural networks (SDRNNs) subject to parameter uncertainties in connection weight matrices. Given a globally exponentially stable SDRNN, the problem to be addressed here is how much the parameter uncertainties in connection weight matrices the SDRNN can withstand to be globally exponentially stable. Different from the traditional Lyapuvon stability theory, we only use the coefficients of global exponential stability. The upper bounds of parameter uncertainties are characterized using transcendental equations for the SDRNNs to sustain globally exponentially stable. Moreover, we prove theoretically that, for any globally exponentially stable SDRNNs, if additive parameter uncertainties in connection weight matrices are smaller than the derived upper bounds at here, then the perturbed SDRNNs are guaranteed to also be globally exponentially stable. A numerical example is provided here to illustrate the theoretical results.
机译:在本文中,我们分析了在连接权重矩阵中存在参数不确定性的随机延迟递归神经网络(SDRNN)的全局指数稳定性的鲁棒性。给定全局指数稳定的SDRNN,此处要解决的问题是SDRNN可以承受的全局全局指数稳定的连接权重矩阵中的参数不确定性。与传统的Lyapuvon稳定性理论不同,我们仅使用全局指数稳定性系数。使用SDRNN的先验方程来表征参数不确定性的上限,以保持全局指数稳定。此外,我们从理论上证明,对于任何全局指数稳定的SDRNN,如果连接权重矩阵中的加性参数不确定性小于此处导出的上限,则可以保证被摄动的SDRNN也是全局指数稳定的。这里提供了一个数值示例来说明理论结果。

著录项

  • 来源
    《Circuits, systems, and signal processing》 |2014年第7期|2065-2083|共19页
  • 作者

    Song Zhu; Weiwei Luo; Yi Shen;

  • 作者单位

    College of Science, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China;

    College of Science, China University of Mining and Technology, Xuzhou 221116, Jiangsu, People's Republic of China;

    College of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Stochastic recurrent neural networks; Global exponential stability; Delayed; Robustness;

    机译:随机递归神经网络;全局指数稳定性;延迟;坚固性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号