首页> 外文期刊>Neurocomputing >Taguchi method-ANN integration for predictive model of intrinsic stress in hydrogenated amorphous silicon film deposited by plasma enhanced chemical vapour deposition
【24h】

Taguchi method-ANN integration for predictive model of intrinsic stress in hydrogenated amorphous silicon film deposited by plasma enhanced chemical vapour deposition

机译:Taguchi方法-ANN集成用于等离子体增强化学气相沉积沉积氢化非晶硅膜中固有应力的预测模型

获取原文
获取原文并翻译 | 示例

摘要

An integration of Taguchi method and artificial neural network (ANN) technique for the prediction of intrinsic stresses induced during plasma enhanced chemical vapor deposition (PECVD) of hydrogenated amorphous silicon (a-Si:H) thin films is presented. Inputs to the ANN model are plasma power, hydrogen dilution ratio, chamber pressure and substrate temperature. Ninety-two data points were used for the network training, model validation and testing in a 2:1:1 relative proportion. An optimized model with a network architecture of 4-5-3-1, a Levenberg-Marquardt training algorithm and a learning rate of 0.1 was obtained from L_9 (34) orthogonal array based on Taguchi approach. By using the optimized network, parametric studies were conducted to show how the intrinsic stresses are influenced by the deposition parameters. Analysis of variance (ANOVA) of the ANN variables indicates that the first hidden layer is the most significant parameter contributing about 39% to the changes in the network mean square error (MSE) while the second hidden layer contributes about 15%. Accuracies of the predictive model are within + 2.5% and ±13% error bound for compressive and tensile stress regimes, respectively. Also, results of the parametric study show a clear trend between the deposition parameters and the resulting intrinsic stresses, and are found to agree with published data. The results are discussed in the light of physics of PECVD process.
机译:提出了Taguchi方法与人工神经网络(ANN)技术的集成,用于预测氢化非晶硅(a-Si:H)薄膜的等离子体增强化学气相沉积(PECVD)过程中引起的固有应力。 ANN模型的输入是等离子功率,氢气稀释比,反应室压力和底物温度。 92个数据点以2:1:1的相对比例用于网络训练,模型验证和测试。基于Taguchi方法,从L_9(34)正交阵列中获得了具有4-5-3-1网络结构,Levenberg-Marquardt训练算法和0.1的学习率的优化模型。通过使用优化的网络,进行了参数研究,以显示固有应力如何受到沉积参数的影响。 ANN变量的方差分析(ANOVA)表明,第一隐藏层是影响网络均方误差(MSE)变化的最重要参数,约占39%,而第二个隐藏层贡献了约15%。对于压缩和拉伸应力,预测模型的精度分别在±2.5%和±13%的误差范围内。此外,参数研究的结果显示出沉积参数与所产生的固有应力之间的明显趋势,并且发现与公开的数据一致。根据PECVD工艺的物理原理讨论了结果。

著录项

  • 来源
    《Neurocomputing》 |2013年第15期|86-94|共9页
  • 作者

    T.B. Asafa; N. Tabet; SAM. Said;

  • 作者单位

    Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;

    Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;

    Center of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    intrinsic stress; ANN; PECVD; hydrogenated amorphous silicon; taguchi method;

    机译:固有应力;人工神经网络;PECVD;氢化非晶硅;田口法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号