首页> 外文期刊>Neurocomputing >Exponential synchronization of Markovian jumping neural networks with partly unknown transition probabilities via stochastic sampled-data control
【24h】

Exponential synchronization of Markovian jumping neural networks with partly unknown transition probabilities via stochastic sampled-data control

机译:随机采样数据控制具有未知转移概率的马尔可夫跳跃神经网络的指数同步

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the exponential synchronization for a class of delayed neural networks with Markovian jumping parameters and time varying delays. The considered transition probabilities are assumed to be partially unknown. In addition, the sampling period is assumed to be time-varying that switches between two different values in a random way with given probability. Several delay-dependent synchronization criteria have been derived to guarantee the exponential stability of the error systems and the master systems are stochastically synchronized with the slave systems. By introducing an improved Lyapunov-Krasovskii functional (LKF) including new triple integral terms, free-weighting matrices, partly unknown transition probabilities and combining both the convex combination technique and reciprocal convex technique, a delay-dependent exponential stability criteria is obtained in terms of linear matrix inequalities (LMIs). The information about the lower bound of the discrete time-varying delay is fully used in the LKF. Furthermore, the desired sampled-data synchronization controllers can be solved in terms of the solution to LMIs. Finally, numerical examples are provided to demonstrate the feasibility of the proposed estimation schemes from its gain matrices.
机译:本文研究了一类具有马尔可夫跳跃参数和时变时滞的时滞神经网络的指数同步。假定所考虑的转移概率部分未知。另外,假设采样周期是随时间变化的,它以给定的概率以随机方式在两个不同的值之间切换。已经推导了几个依赖于延迟的同步准则,以保证误差系统的指数稳定性,并且主系统与从系统随机同步。通过引入改进的Lyapunov-Krasovskii泛函(LKF),包括新的三重积分项,自由加权矩阵,部分未知的转移概率,并结合凸组合技术和倒数凸技术,从而获得了依赖于延迟的指数稳定性标准线性矩阵不等式(LMI)。 LKF中充分使用了有关离散时变延迟下限的信息。此外,可以根据LMI的解决方案来解决所需的采样数据同步控制器。最后,提供了数值例子来说明从其增益矩阵中提出的估计方案的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号