首页> 外文期刊>Neurocomputing >Complex learning in connectionist networks
【24h】

Complex learning in connectionist networks

机译:连接主义网络中的复杂学习

获取原文
获取原文并翻译 | 示例

摘要

The appropriate choice of a learning algorithm is a central issue in neural network (connectionist network) design. In the literature, a number of such learning methods are available and are broadly classified as supervised, unsupervised and reinforcement learning. This special issue introduces novel complex learning procedures for handling different types of data in several application domains. The six papers in this special issue represent a selection of extended contributions from the World Congress in Nature and Bio-Inspired Computing (NaBIC). Articles were selected on the basis of fundamental ideas and concepts rather than the direct usage of well-established techniques. The special issue is aimed at practitioners and researchers from the academia and industry who are engaged in the development of advanced learning methods from a theoretical perspective and also for data analysis and solving real-world problems. The papers are organized as follows.
机译:学习算法的适当选择是神经网络(连接主义网络)设计中的中心问题。在文献中,有许多这样的学习方法可用,并且大致分为监督学习,无监督学习和强化学习。本期特刊介绍了新颖的复杂学习过程,用于在多个应用程序域中处理不同类型的数据。本期特刊中的六篇论文代表了自然与生物启发计算世界大会(NaBIC)的一系列扩展贡献。选择文章的依据是基本思想和概念,而不是直接使用成熟的技术。特刊主要面向学术界和行业的从业人员和研究人员,他们从理论的角度致力于高级学习方法的开发,还致力于数据分析和解决现实问题。论文组织如下。

著录项

  • 来源
    《Neurocomputing》 |2014年第23期|52-52|共1页
  • 作者

    Ajith Abraham;

  • 作者单位

    Machine Intelligence Research Labs (MIR Labs), Scientific Network for Innovation and Research Excellence, P.O. Box 2259, Auburn, Washington 98071, USA IT4 Innovations, Center for Excellence, VSB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Poruba, Czech Republic;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号