首页> 外文OA文献 >Learning the Thematic Roles of Words in Sentences via Connectionist Networks that Satisfy Strong Systematicity
【2h】

Learning the Thematic Roles of Words in Sentences via Connectionist Networks that Satisfy Strong Systematicity

机译:通过满足强系统性的连接主义网络学习单词在句子中的主题作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents two connectionist models, which can learn the thematic roles of words in sentences by receiving aspects of real world situations to which the sentences are referring, and exhibit strong systematicity without prior syntactic knowledge. The models are intended towards cognitively and biologically plausible connectionist models. Current models could be parts of the larger network to represent the meaning of a whole sentence. The first model, closest, of the two models, to being purely connectionist, attains an acceptable result (98.31% of the roles correctly identified). The second one, not purely connectionist, achieves a perfect result. It could be argued that humans learn the thematic roles, as an emergent property of learning the relationship between the words/sentences and the real world situations. However, it is not claimed that the models are the human learning mechanism for language acquisition.
机译:本文提出了两个连接论模型,它们可以通过接收句子所指的现实情况来学习句子中单词的主题作用,并且在没有先验句法知识的情况下表现出强大的系统性。该模型旨在用于认知和生物学上可行的连接主义者模型。当前的模型可能是较大网络的一部分,以表示整个句子的含义。这两个模型中最接近纯连接主义者的第一个模型获得了可接受的结果(正确识别的角色的98.31%)。第二个,不是纯粹的连接主义者,取得了完美的结果。可以说,人类学习主题角色是学习单词/句子与现实世界之间关系的新兴属性。但是,并未声称模型是用于语言习得的人类学习机制。

著录项

  • 作者

    Geranmayeh Parastoo;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号