机译:使用极限学习机的多输出两阶段局部正则化模型构造方法
Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200072, China,School of Electronics, Electrical Engineering and Computer Science, Queens University Belfast, Belfast BT9 5 AH, UK;
School of Electronics, Electrical Engineering and Computer Science, Queens University Belfast, Belfast BT9 5 AH, UK;
Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200072, China;
Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200072, China;
Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200072, China;
Extreme learning machine; Multi-output linear-in-the-parameters (LITP) model; Regularization; Two-stage stepwise selection;
机译:基于极限学习机的新型自动两阶段局部正则化分类器构造方法
机译:通过双局线性嵌入歧管学习来训练多标题神经网络分类器来规范极限学习机
机译:具有奇异值分解和L $ _ {2} $-Tikhonov正则化的最优,投影和正则化极限学习机方法
机译:多输出极限学习机的建设性模型选择
机译:机器学习中正则化凸公式的优化方法。
机译:使用机器学习方法构建超出标准线性模型的环境风险评分:应用于NHANES中的金属混合物氧化应激和心血管疾病
机译:使用极限学习机的多输出两阶段局部正则化模型构造方法
机译:解决基于机器学习的网络入侵检测系统中极端类不平衡的方法。