首页> 外文学位 >Optimization methods for regularized convex formulations in machine learning.
【24h】

Optimization methods for regularized convex formulations in machine learning.

机译:机器学习中正则化凸公式的优化方法。

获取原文
获取原文并翻译 | 示例

摘要

We develop efficient numerical optimization algorithms for regularized convex formulations that appear in a variety of areas such as machine learning, statistics, and signal processing. Their objective functions consist of a loss term and a regularization term, where the latter controls the complexity of prediction models or induces a certain structure to the solution encoding our prior knowledge. The formulations become difficult to solve when we consider a large amount of data, or when we employ nonsmooth functions in the objective.;We study algorithms in two different learning environments, online and batch learning. In online learning, we consider subgradient algorithms closely aligned to stochastic approximation. Each step of these algorithms requires low computation and thus appealing for large-scale applications, despite their slow asymptotic convergence. We study properties of a stochastic subgradient algorithm for regularized problems, revealing that the manifold embracing a solution can be identified in finite iterations with high probability. This allows us developing a new algorithmic strategy that switches to another type of optimization on the near-optimal manifold. We also present a sub-gradient algorithm customized for the nonlinear support vector machines (SVMs), where kernels are approximated with low-dimensional surrogate mappings.;On the other hand, in batch learning, we typically have full access to the objective. For moderate-sized learning tasks, batch approaches often find solutions much faster than online counterparts. In this setting we discuss algorithms based on decomposition and cutting-plane techniques, exploiting the structure of SVMs for efficiency.
机译:我们针对出现在诸如机器学习,统计和信号处理等各个领域的正则化凸公式开发高效的数值优化算法。它们的目标函数由损失项和正则项组成,后者控制预测模型的复杂性或为编码我们先验知识的解决方案引入某种结构。当我们考虑大量数据或在目标中采用非平滑函数时,公式变得难以求解。我们在两种不同的学习环境(在线学习和批处理学习)中研究算法。在在线学习中,我们认为次梯度算法与随机逼近紧密匹配。尽管这些算法的渐近收敛速度很慢,但它们的每个步骤都需要很少的计算,因此对于大规模应用很有吸引力。我们研究了正则化问题的随机次梯度算法的性质,揭示了可以在有限迭代中以高概率识别出包含解的流形。这使我们能够开发一种新的算法策略,该策略可切换到接近最佳流形的另一种优化类型。我们还提出了一种针对非线性支持向量机(SVM)定制的次梯度算法,该算法使用低维替代映射来逼近内核。另一方面,在批处理学习中,我们通常可以完全访问该目标。对于中等规模的学习任务,批处理方法通常比在线方法要快得多。在这种情况下,我们将讨论基于分解和切面技术的算法,并利用SVM的结构来提高效率。

著录项

  • 作者

    Lee, Sang Kyun.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号