机译:基于极限学习机的新型自动两阶段局部正则化分类器构造方法
Shanghai Key Laboratory of Power Station Automation Technology, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai 200072, China,School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT9 5 AH, UK;
School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT9 5 AH, UK;
School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT9 5 AH, UK;
School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT9 5 AH, UK;
classification; extreme learning machine; leave-one-out (LOO) misclassification rate; linear-in-the-parameters model; regularization; two-stage stepwise selection;
机译:使用极限学习机的多输出两阶段局部正则化模型构造方法
机译:通过双局线性嵌入歧管学习来训练多标题神经网络分类器来规范极限学习机
机译:通过多尺度字典学习和自适应差分进化优化正则化极限学习机进行织物疵点检测和分类
机译:通过基于极限学习机的一类分类器构造多分类器
机译:机器学习中正则化凸公式的优化方法。
机译:缩回:医学数据集分类:结合粒子群优化与极限学习机分类器的机器学习范例
机译:使用极限学习机的多输出两阶段局部正则化模型构造方法