首页> 外文期刊>Neurocomputing >Multiple graph regularized sparse coding and multiple hypergraph regularized sparse coding for image representation
【24h】

Multiple graph regularized sparse coding and multiple hypergraph regularized sparse coding for image representation

机译:用于图像表示的多图正则化稀疏编码和多图正则化稀疏编码

获取原文
获取原文并翻译 | 示例

摘要

Manifold regularized sparse coding shows promising performance for various applications. The key issue that must be considered in the application is how to adaptively select the suitable graph hyper-parameters in manifold learning for the sparse coding task. Usually, cross validation is applied, but it does not necessarily scale up and easily leads to overfitting. In this article, multiple graph sparse coding (MGrSc) and multiple Hypergraph sparse coding (MHGrSc) for image representation are proposed. Inspired by the Ensemble Manifold Regularizer, we formulate multiple graph and multiple Hypergraph regularizers to guarantee the smoothness of sparse codes along the geodesics of a data manifold, which is characterized by fusing the multiple previously given graph Laplacians or Hypergraph Laplacians. Then, the proposed regularziers, respectively, are incorporated into the traditional sparse coding framework, which results in two unified objective functions of sparse coding. Alternating optimization is used to optimize the objective functions, and two, novel manifold regularized sparse coding algorithms are presented. The proposed two sparse coding methods learn both the composite manifold and the sparse coding jointly, and it is fully automatic for learning the graph hyper-parameters in the manifold learning. Image clustering tests on real world datasets demonstrated that the proposed sparse coding methods are superior to the state-of-the-art methods.
机译:流形正规化的稀疏编码在各种应用中显示出令人鼓舞的性能。在应用中必须考虑的关键问题是如何在流形学习中为稀疏编码任务自适应地选择合适的图形超参数。通常,会应用交叉验证,但不一定会扩大规模,并且很容易导致过度拟合。在本文中,提出了用于图像表示的多重图稀疏编码(MGrSc)和多重超图稀疏编码(MHGrSc)。受Ensemble Manifold Regularizer的启发,我们制定了多个图和多个Hypergraph正则化器,以保证稀疏代码沿数据流形的测地线的平滑性,其特点是将多个先前给定的图Laplacians或Hypergraph Laplacians融合在一起。然后,将提出的正则子分别合并到传统的稀疏编码框架中,从而产生了两个统一的稀疏编码目标函数。利用交替优化对目标函数进行优化,给出了两种新颖的流形正则稀疏编码算法。所提出的两种稀疏编码方法可以同时学习复合流形和稀疏编码,并且在流形学习中是全自动学习图超参数的。在现实世界数据集上的图像聚类测试表明,所提出的稀疏编码方法优于最新方法。

著录项

  • 来源
    《Neurocomputing》 |2015年第22期|245-256|共12页
  • 作者单位

    Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, 361005, P.R. China,Science and Technology on Electro-optic Control Laboratory, Luoyang, 471009, China;

    School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, China;

    Department of Computer Science and Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou, 450015, China;

    Computer Science Department, School of Information Science and Engineering, Xiamen University, Xiamen, 361005, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Sparse coding; Graph; Hypergraph; Alternating optimization;

    机译:稀疏编码;图形;超图交替优化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号