首页> 外文会议>Chinese conference on pattern recognition and computer vision >The Optimal Graph Regularized Sparse Coding with Application to Image Representation
【24h】

The Optimal Graph Regularized Sparse Coding with Application to Image Representation

机译:最优图正则化稀疏编码及其在图像表示中的应用

获取原文

摘要

Sparse representation has shown its superiority and effectiveness in many real applications in recent years. However, it is still an open problem to effectively preserve the intrinsic geometric structure of data in new representation space. In this paper, we propose a novel method, called the Optimal Graph regularized Sparse Coding (OGSC), to deal with the high dimensional data. Specifically, we impose a rank constraint on the Laplacian matrix of the graph model, and thus can learn the optimal graph to preserve the manifold structure of data in each iteration. Additionally, the optimization scheme for our proposed method is also provided in this paper. The experimental results on three benchmark datasets have shown that our proposed OGSC method outperforms other stat-of-the-art methods.
机译:近年来,稀疏表示法已显示出其在许多实际应用中的优越性和有效性。但是,有效地在新的表示空间中保留数据的固有几何结构仍然是一个未解决的问题。在本文中,我们提出了一种新的方法,称为最优图正则化稀疏编码(OGSC),以处理高维数据。具体来说,我们在图模型的拉普拉斯矩阵上施加秩约束,从而可以学习最佳图,以保留每次迭代中数据的流形结构。此外,本文还为我们提出的方法提供了优化方案。在三个基准数据集上的实验结果表明,我们提出的OGSC方法优于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号