首页> 外文期刊>Neurocomputing >Supervised feature learning via l(2)-norm regularized logistic regression for 3D object recognition
【24h】

Supervised feature learning via l(2)-norm regularized logistic regression for 3D object recognition

机译:通过l(2)-范数正则逻辑回归进行有监督的特征学习,以进行3D对象识别

获取原文
获取原文并翻译 | 示例

摘要

With the advance of 3D digitalization techniques, it has produced a large number of digital 3D objects, which are usually present in graph, image or video format. In this paper, we focus on designing a novel feature extraction method towards 2D image of 3D object for recognition task. Motivated by the fact that the responses generated by a classifier for two objects can highly reflect their semantic similarity, we attempt to exploit a set of classifiers to construct feature extraction method. The basic idea is as follows. We first learn a classifier for each class and then combine the outputs of all classifiers as object feature. Due to the label information being considered, the proposed method will be more powerful than the typical methods, such as SIFT based bag-of-feature and sparse coding, in terms of discovering the latent semantic information. This is helpful to improve the accuracy of the object recognition. In addition, to make the proposed method scalable to be trained over the massive data (so as to better its generalization ability), the l(2)-norm logistic regression is selected as the classifier and trained with stochastic gradient ascent. At the aspect of time complexity, the proposed method is linear to the number of image pixels and less expensive than the other two methods. These arguments have been demonstrated by the obtained experimental results, which is performed over four 3D datasets, such as COIL-100, 3Ddata, ETH-80 and RGB-D dataset. (C) 2014 Elsevier B.V. All rights reserved.
机译:随着3D数字化技术的进步,它已经产生了大量的数字3D对象,这些对象通常以图形,图像或视频格式显示。在本文中,我们专注于设计一种针对3D对象的2D图像进行识别任务的新颖特征提取方法。基于分类器针对两​​个对象生成的响应可以高度反映其语义相似性这一事实,我们试图利用一组分类器来构建特征提取方法。基本思想如下。我们首先为每个类学习一个分类器,然后将所有分类器的输出组合为对象特征。由于考虑了标签信息,因此在发现潜在语义信息方面,该方法将比典型方法(如基于SIFT的特征包和稀疏编码)更强大。这有助于提高物体识别的准确性。另外,为了使所提出的方法可扩展以在海量数据上进行训练(以提高其泛化能力),选择l(2)-范数逻辑回归作为分类器,并采用随机梯度上升进行训练。在时间复杂度方面,所提出的方法与图像像素的数量呈线性关系,并且比其他两种方法便宜。这些论点已由获得的实验结果证明,该实验结果在四个3D数据集(例如COIL-100、3Ddata,ETH-80和RGB-D数据集)上执行。 (C)2014 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2015年第2期|603-611|共9页
  • 作者单位

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

    Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China;

    Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China;

    Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430074, Peoples R China;

    Univ Trento, Dept Informat Engn & Comp Sci, I-38100 Trento, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Logistic regression; Stochastic gradient ascent; 3D object recognition; Feature learning;

    机译:Logistic回归;随机梯度上升;3D对象识别;特征学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号