首页> 外文期刊>Neurocomputing >A modular extreme learning machine with linguistic interpreter and accelerated chaotic distributor for evaluating the safety of robot maneuvers in laparoscopic surgery
【24h】

A modular extreme learning machine with linguistic interpreter and accelerated chaotic distributor for evaluating the safety of robot maneuvers in laparoscopic surgery

机译:带有语言解释器和加速混沌分配器的模块化极限学习机,用于评估腹腔镜手术中机器人操作的安全性

获取原文
获取原文并翻译 | 示例

摘要

In this investigation, a systematic sequential intelligent system is proposed to provide the surgeon with an estimation of the state of the tool-tissue interaction force in laparoscopic surgery. To train the proposed intelligent system, a 3D model of an in vivo porcine liver was built for different probing tasks. To capture the required knowledge, three different geometric features, i.e. Y displacement of the nodes on the upper surface and slopes on the closest node to the deforming area of the upper edge in both X-Y and Z-Y planes, were extracted experimentally. The numerical simulations are conducted in three independent successive stages. At the first step, a well-known partition-based clustering technique called accelerated chaotic particle swarm optimization (ACPSO) is used to cluster the information of database into a number of partitions. Thereafter, a modular extreme learning machine (M-ELM) is used to model the characteristics of each cluster. Finally, the output of M-ELM is fed to a Mamdani fuzzy inference system (MFIS) to interpret the safety of robot maneuvers in laparoscopic surgery. The proposed intelligent framework is used for real-time applications so that the surgeon can adjust the movements of the robot to avoid operational hazards. Based on a rigor comparative study, it is indicated that not only the proposed intelligent technique can effectively handle the considered problem but also is a reliable alternative to physical sensors and measurement tools. (C) 2014 Elsevier B.V. All rights reserved.
机译:在这项研究中,提出了一个系统的顺序智能系统,为外科医生提供腹腔镜手术中工具-组织相互作用力状态的估计值。为了训练提出的智能系统,针对不同的探测任务建立了体内猪肝的3D模型。为了获取所需的知识,实验提取了三种不同的几何特征,即在X-Y和Z-Y平面上上表面节点的Y位移和最接近上边缘变形区域的节点上的斜率。数值模拟在三个独立的连续阶段中进行。第一步,使用一种称为加速混沌粒子群优化(ACPSO)的众所周知的基于分区的聚类技术,将数据库信息聚类为多个分区。此后,使用模块化的极限学习机(M-ELM)对每个集群的特征进行建模。最后,将M-ELM的输出输入到Mamdani模糊推理系统(MFIS)中,以解释腹腔镜手术中机器人操作的安全性。所提出的智能框架可用于实时应用,以便外科医生可以调整机器人的运动,以避免操作危险。根据严格的比较研究表明,提出的智能技术不仅可以有效地解决所考虑的问题,而且还是物理传感器和测量工具的可靠替代品。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号