首页> 外文期刊>Neurocomputing >Image/video compressive sensing recovery using joint adaptive sparsity measure
【24h】

Image/video compressive sensing recovery using joint adaptive sparsity measure

机译:使用联合自适应稀疏度度量的图像/视频压缩感测恢复

获取原文
获取原文并翻译 | 示例

摘要

Compressive sensing (CS) is a recently emerging technique and an extensively studied problem in signal and image processing, which enables joint sampling and compression into a unified approach. Recently, local smoothness and nonlocal self-similarity have both led to superior sparsity priors for CS image restoration. In this paper, first, a new sparsity measure called joint adaptive sparsity measure (JASM) is introduced. The proposed JASM enforces both local sparsity and nonlocal 3D sparsity in transform domain, concurrently, providing a powerful mechanism for characterizing the structured sparsities of natural image. More precisely, the local sparsity depicts the local smoothness redundancies exploited by an adaptively learned sparsifying basis, and the nonlocal 3D sparsity corresponds to the nonlocal self similarity constraint achieved by a new proposed nonlocal statistical sparse modeling. Then, two novel techniques for high-fidelity CS image and video recovery via JASM are proposed. The proposed methods are formulated in the form of minimization functional under regularization-based framework which is solved via an efficient alternating minimization algorithm based on split Bregman framework. Comprehensive experimental results are reported to manifest the effectiveness of the proposed methods compared with the current state-of-the-art methods in CS image/video restoration. (C) 2016 Elsevier B.V. All rights reserved.
机译:压缩感测(CS)是一种新兴技术,是信号和图像处理领域中广泛研究的问题,它使联合采样和压缩成为统一的方法。最近,局部平滑度和非局部自相似性都导致了CS图像恢复的先验稀疏性。本文首先介绍了一种新的稀疏度量,称为联合自适应稀疏度量(JASM)。提出的JASM同时在变换域中实施了局部稀疏性和非局部3D稀疏性,同时提供了一种强大的机制来表征自然图像的结构化稀疏性。更精确地,局部稀疏性描述了自适应学习的稀疏化基础所利用的局部平滑冗余,并且非局部3D稀疏性对应于通过新提出的非局部统计稀疏建模实现的非局部自相似约束。然后,提出了两种通过JASM进行高保真CS图像和视频恢复的新技术。在基于正则化的框架下,提出的方法以最小化函数的形式提出,通过基于分裂Bregman框架的高效交替最小化算法进行求解。据报道,全面的实验结果表明,与CS图像/视频恢复的当前最先进方法相比,该方法的有效性。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号