首页> 外文OA文献 >An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System
【2h】

An Adaptive Joint Sparsity Recovery for Compressive Sensing Based EEG System

机译:基于压缩感测的EEG系统的自适应关节稀疏性恢复

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The last decade has witnessed tremendous efforts to shape the Internet of things (IoT) platforms to be well suited for healthcare applications. These platforms are comprised of a network of wireless sensors to monitor several physical and physiological quantities. For instance, long-term monitoring of brain activities using wearable electroencephalogram (EEG) sensors is widely exploited in the clinical diagnosis of epileptic seizures and sleeping disorders. However, the deployment of such platforms is challenged by the high power consumption and system complexity. Energy efficiency can be achieved by exploring efficient compression techniques such as compressive sensing (CS). CS is an emerging theory that enables a compressed acquisition using well-designed sensing matrices. Moreover, system complexity can be optimized by using hardware friendly structured sensing matrices. This paper quantifies the performance of a CS-based multichannel EEG monitoring. In addition, the paper exploits the joint sparsity of multichannel EEG using subspace pursuit (SP) algorithm as well as a designed sparsifying basis in order to improve the reconstruction quality. Furthermore, the paper proposes a modification to the SP algorithm based on an adaptive selection approach to further improve the performance in terms of reconstruction quality, execution time, and the robustness of the recovery process.
机译:过去十年目睹了造型造型的巨大努力(IOT)平台,非常适合医疗保健应用。这些平台由无线传感器网络组成,用于监测几种物理和生理量。例如,使用可穿戴型脑电图(EEG)传感器的大脑活动的长期监测在癫痫发作和睡眠障碍的临床诊断中被广泛利用。但是,这些平台的部署受到高功耗和系统复杂性的挑战。通过探索有效的压缩技术,例如压缩感测(CS)可以实现能量效率。 CS是一种新兴理论,可以使用设计良好设计的传感矩阵来实现压缩采集。此外,通过使用硬件友好的结构感测矩阵,可以优化系统复杂性。本文量化了基于CS的多声道EEG监测的性能。此外,本文利用子空间追求(SP)算法和设计的稀疏基础利用多通道EEG的关节稀疏性,以提高重建质量。此外,本文提出了基于自适应选择方法对SP算法的修改,以进一步提高在重建质量,执行时间和恢复过程的鲁棒性方面的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号