首页> 美国政府科技报告 >Compressive Distilled Sensing: Sparse Recovery Using Adaptivity in Compressive Measurements
【24h】

Compressive Distilled Sensing: Sparse Recovery Using Adaptivity in Compressive Measurements

机译:压缩蒸馏传感:在压缩测量中使用适应性的稀疏恢复

获取原文

摘要

The recently-proposed theory of distilled sensing establishes that adaptivity in sampling can dramatically improve the performance of sparse recovery in noisy settings. In particular, it is now known that adaptive point sampling enables the detection and/or support recovery of sparse signals that are otherwise too weak to be recovered using any method based on non-adaptive point sampling. In this paper the theory of distilled sensing is extended to highly-undersampled regimes, as in compressive sensing. A simple adaptive sampling-and-refinement procedure called compressive distilled sensing is proposed, where each step of the procedure utilizes information from previous observations to focus subsequent measurements into the proper signal subspace, resulting in a significant improvement in effective measurement SNR on the signal subspace. As a result, for the same budget of sensing resources, compressive distilled sensing can result in significantly improved error bounds compared to those for traditional compressive sensing.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号