首页> 外文期刊>Neurocomputing >Neural network-based adaptive control for a class of chemical reactor systems with non-symmetric dead-zone
【24h】

Neural network-based adaptive control for a class of chemical reactor systems with non-symmetric dead-zone

机译:一类具有非对称死区的化学反应器系统的基于神经网络的自适应控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive predictive control algorithm is employed to controlling a class of continuous stirred tank reactor (CSTR) system. The main contribute of this paper is that the CSTR system are in discrete-time form and non-symmetric dead-zone inputs are considered here. The design parameters of control algorithm for the CSTR systems are not so much than before, such that the calculated amount of the control algorithm is less than before. By considering the Radial basis function neural networks (RBFNN), the unknown functions are approximated, the mean value theorem is utilized in the algorithm design process. Based on the Lyapunov analysis method, and choosing the design parameters appropriately, all the signals in the closed-loop system are proved to be semi-global uniformly ultimately bounded (SGUUB) and the tracking error is converged to a small compact set. A simulation example for CSTR systems is studied to demonstrate the effectiveness of the proposed approach. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文采用自适应预测控制算法控制一类连续搅拌釜反应器(CSTR)系统。本文的主要贡献在于CSTR系统采用离散时间形式,此处考虑了非对称死区输入。 CSTR系统的控制算法的设计参数没有以前那么多,因此控制算法的计算量比以前少。通过考虑径向基函数神经网络(RBFNN),对未知函数进行近似,在算法设计过程中利用均值定理。基于Lyapunov分析方法,适当选择设计参数,证明闭环系统中的所有信号均为半全局一致最终有界(SGUUB),并且跟踪误差收敛到一个小的紧集。研究了CSTR系统的仿真示例,以证明所提出方法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号