首页> 外文期刊>Neurocomputing >Curvature manipulation of the spectrum of Valence-Arousal-related fMRI dataset using Gaussian-shaped Fast Fourier Transform and its application to fuzzy KANSEI adjectives modeling
【24h】

Curvature manipulation of the spectrum of Valence-Arousal-related fMRI dataset using Gaussian-shaped Fast Fourier Transform and its application to fuzzy KANSEI adjectives modeling

机译:基于高斯形快速傅立叶变换的价电子相关fMRI数据集的曲率操纵及其在模糊KANSEI形容词建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

Valence-Arousal is regarded as a reflection of KANSEI adjectives, which is the core concept in the theory of emotional dimensions for brain recognition. This paper presents a novel method for determining the characteristics of Valence-Arousal-based timing signals using Power Spectrum Density (PSD) of fMRI images, and Gaussian filtering, segmenting, and Gaussian-shaped Fast Fourier Transform (FFT) will be applied for reprocessing fMRI images; the timing characteristics of the fMRI image signals were extracted under short-term emotional picture stimuli (within 6 s). To reduce the computational complexity, a cubic curve fitting method was used to smooth the Valence-Arousal timing curve, and the coefficients of the fitted curve, the mean, and the standard deviation were derived from the Gaussian-shaped Affective Norm English Words (ANEW) system, subsequently, these parameters were selected to create a 4-INPUT 2-OUTPUT Takagi-Sugeno (T-S) type Adaptive Neuro Fuzzy Inference System (ANFIS). In the experimental study, an fMRI data-set was acquired for KANSEI-"kindness" picture stimuli and the FIS prediction was 0.05 less than the Root Mean Square Error (RMSE) after 24/18 iteration epochs for Valence/Arousal. These experiments showed that the proposed method effectively simplified high complexity when calculating fMRI images. The cubic curve fitting method extracted the characteristics of the Valence-Arousal time series-based curves effectively and established the KANSEI adjective content more accurately by comparing with the ANEW system of Valence-Arousal values. The proposed curve generation methods for the Valence-Arousal response of KANSEI adjectives will be a potential application for attention-oriented product design fields. (C) 2015 Elsevier B.V. All rights reserved.
机译:价朗斯被认为是关西形容词的反映,它是大脑识别情绪维度理论的核心概念。本文提出了一种使用fMRI图像的功率谱密度(PSD)确定基于价位定时信号的特征的新方法,并将高斯滤波,分段和高斯型快速傅立叶变换(FFT)用于后处理功能磁共振成像图像;在短期情感图片刺激下(6s以内)提取fMRI图像信号的时序特征。为了降低计算复杂度,使用了三次曲线拟合方法对Valence-Arousal时间曲线进行平滑处理,并且拟合曲线的系数,均值和标准差从高斯形情感规范英语单词(ANEW )系统,随后选择这些参数以创建4-INPUT 2-OUTPUT Takagi-Sugeno(TS)类型的自适应神经模糊推理系统(ANFIS)。在实验研究中,获得了FANS数据集以用于KANSEI“善意”图片刺激,并且在价/基数重复24/18个周期后,FIS预测比均方根误差(RMSE)小0.05。这些实验表明,该方法在计算fMRI图像时有效地简化了高复杂度。三次曲线拟合法通过与ANEW价数-值的系统进行比较,有效地提取了基于价数-时间序列的曲线的特征,并更准确地建立了KANSEI形容词的内容。拟议的关西形容词价价-曲线响应曲线生成方法将是面向注意力产品设计领域的潜在应用。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号