首页> 外文期刊>Neurocomputing >Gradient-based no-reference image blur assessment using extreme learning machine
【24h】

Gradient-based no-reference image blur assessment using extreme learning machine

机译:使用极限学习机的基于梯度的无参考图像模糊评估

获取原文
获取原文并翻译 | 示例

摘要

The increasing number of demanding consumer digital multimedia applications has boosted interest in no-reference (NR) image quality assessment (IQA). In this paper, we propose a perceptual NR blur evaluation method using a new machine learning technique, i.e., extreme learning machine (ELM). The proposed metric, Blind Image Blur quality Evaluator (BIBE), exploits scene statistics of gradient magnitudes to model the properties of blurred images, and then the underlying blur features are derived by fitting gradient magnitudes distribution. The resultant feature is finally mapped into an associated quality score using ELM. As subjective evaluation scores by human beings are integrated into training, machine learning techniques can predict image quality more accurately than those traditional methods. Compared with other learning techniques such as support vector machine (SVM), ELM has better learning performance and faster learning speed. Experimental results on public databases show that the proposed BIBE correlates well with human perceived blurriness, and outperforms the state-of-the-art specific NR blur evaluation metrics as well as generic NR IQA methods. Moreover, the application of automatic focusing system for digital cameras further confirms the capability of BIBE. (C) 2015 Elsevier B.V. All rights reserved.
机译:日益增长的需求性消费者数字多媒体应用程序的数量增加了对无参考(NR)图像质量评估(IQA)的兴趣。在本文中,我们提出了一种使用新的机器学习技术(即极限学习机(ELM))的感知NR模糊评估方法。提出的度量标准盲图像模糊质量评估器(BIBE)利用梯度量级的场景统计来对模糊图像的属性进行建模,然后通过拟合梯度量级分布来推导潜在的模糊特征。最终使用ELM将生成的特征映射到关联的质量得分中。由于将人类的主观评估得分集成到训练中,因此机器学习技术比传统方法可以更准确地预测图像质量。与支持向量机(SVM)等其他学习技术相比,ELM具有更好的学习性能和更快的学习速度。在公共数据库上进行的实验结果表明,提出的BIBE与人类感知的模糊性具有很好的相关性,并且胜过了最新的特定NR模糊评估指标以及常规的NR IQA方法。此外,数码相机自动聚焦系统的应用进一步证实了BIBE的能力。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号