首页> 外文期刊>Neurocomputing >MI-ELM: Highly efficient multi-instance learning based on hierarchical extreme learning machine
【24h】

MI-ELM: Highly efficient multi-instance learning based on hierarchical extreme learning machine

机译:MI-ELM:基于分层极限学习机的高效多实例学习

获取原文
获取原文并翻译 | 示例

摘要

Multi-instance learning (MIL) is one of promising paradigms in the supervised learning aiming to handle real world classification problems where a classification target contains several featured sections, e.g., an image typically contains several salient regions. In this paper, we propose a highly efficient learning method for MI classification based on hierarchical extreme learning machine (ELM), called MI-ELM. Specifically, a double-hidden layers feedforward network (DLFN) is designed to serve as the MI classifier. Then, the MI classification is formulated as an optimization problem. Moreover, the output weights of DLFN can be analytically determined by solving the aforementioned optimization problem. The merits of MI-ELM are as follows: (i) MI-ELM extends the single-layer ELM to be a hierarchical one that well fits for training DLFNs in MI classification. (ii) The input and hidden-layer parameters of DLFNs are assigned randomly rather than tuned iteratively, and the output weights of DLFNs can be determined analytically in one step. Therefore, MI-ELM significantly enhances the efficiency of the DLFN without notable loss of the classification accuracy. Experimental results over several real-world data sets demonstrate that the proposed MI-ELM method significantly outperforms existing kernel methods for MI classification in terms of the classification accuracy and the classification time. (C) 2015 Elsevier B.V. All rights reserved.
机译:多实例学习(MIL)是旨在解决现实世界中分类问题包含多个特征部分(例如图像通常包含多个显着区域)的监督学习中有希望的范例之一。在本文中,我们提出了一种基于层次极限学习机(ELM)的高效MI分类学习方法,称为MI-ELM。具体而言,双层隐藏前馈网络(DLFN)设计为用作MI分类器。然后,将MI分类表述为优化问题。此外,可以通过解决上述优化问题来解析地确定DLFN的输出权重。 MI-ELM的优点如下:(i)MI-ELM将单层ELM扩展为一种层次结构,非常适合在MI分类中训练DLFN。 (ii)DLFN的输入和隐藏层参数是随机分配的,而不是迭代调整的,并且DLFN的输出权重可以一步确定。因此,MI-ELM显着提高了DLFN的效率,而不会显着降低分类精度。在多个实际数据集上的实验结果表明,所提出的MI-ELM方法在分类准确度和分类时间方面显着优于现有的用于MI分类的内核方法。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号