首页> 外文期刊>Neurocomputing >Manifold regularized kernel logistic regression for web image annotation
【24h】

Manifold regularized kernel logistic regression for web image annotation

机译:用于网络图像标注的流形正则化内核逻辑回归

获取原文
获取原文并翻译 | 示例

摘要

With the rapid advance of Internet technology and smart devices, users often need to manage large amounts of multimedia information using smart devices, such as personal image and video accessing and browsing. These requirements heavily rely on the success of image (video) annotation, and thus large scale image annotation through innovative machine learning methods has attracted intensive attention in recent years. One representative work is support vector machine (SVM). Although it works well in binary classification, SVM has a non-smooth loss function and can not naturally cover multi-class case. In this paper, we propose manifold regularized kernel logistic regression (KLR) for web image annotation. Compared to SVM, KLR has the following advantages: (1) the KLR has a smooth loss function; (2) the KLR produces an explicit estimate of the probability instead of class label; and (3) the KLR can naturally be generalized to the multi-class case. We carefully conduct experiments on MIR FLICKR dataset and demonstrate the effectiveness of manifold regularized kernel logistic regression for image annotation. (C) 2015 Elsevier B.V. All rights reserved.
机译:随着Internet技术和智能设备的飞速发展,用户经常需要使用智能设备来管理大量的多媒体信息,例如个人图像和视频的访问和浏览。这些要求在很大程度上取决于图像(视频)注释的成功,因此,近年来,通过创新的机器学习方法进行的大规模图像注释已引起广泛关注。支持向量机(SVM)是一项代表性的工作。尽管SVM在二进制分类中效果很好,但它具有非平滑丢失功能,不能自然地涵盖多类情况。在本文中,我们提出了用于网络图像标注的流形正则核逻辑回归(KLR)。与SVM相比,KLR具有以下优点:(1)KLR具有平滑损耗功能; (2)KLR生成了概率的显式估计,而不是类别标签; (3)KLR自然可以推广到多类情况。我们在MIR FLICKR数据集上进行了仔细的实验​​,并证明了用于图像标注的流形正则核逻辑回归的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号