首页> 外文期刊>Neurocomputing >Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm
【24h】

Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm

机译:基于改进的狼群搜索算法的三维无人机航迹规划

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The unmanned aerial vehicle (UAV) has been a research focus in recent years. The path planner is a key element of the unmanned aerial vehicle autonomous control module. In this paper, the modified wolf pack search (WPS) algorithm is applied to compute the quasi-optimal trajectories for the rotor wing UAVs in the complex three-dimensional (3D) spaces including the real and fake 3D spaces. Moreover, it adopts the multi-objective cost function. In the path planning process, some concepts in the genetic algorithm (GA) are applied to realize the WPS algorithm. Then, the crossover and mutation operators in the GA method are introduced to improve the original WPS algorithm. Considering the dynamic properties of the vehicle, the path smoothing process based on the cubic B-spline curve is used to make the planning path suitable for the fixed wing UAVs. Simulation results show that this approach is efficient for the rotor wing UAVs and the fixed wing UAVs when taking into account of all kinds of constraints and the path generated is flyable. Moreover, the comparisons of the four algorithms show that the trajectories produced by the modified WPS algorithm are far superior to the original WPS algorithm, the GA and the random search way under the same conditions. (C) 2017 Elsevier B.V. All rights reserved.
机译:近年来,无人机一直是研究的重点。路径规划器是无人机自主控制模块的关键要素。本文采用改进的Wolf Pack搜索(WPS)算法来计算复杂的三维(3D)空间(包括真实3D和虚假3D空间)中旋翼无人机的准最优轨迹。此外,它采用了多目标成本函数。在路径规划过程中,应用了遗传算法(GA)中的一些概念来实现WPS算法。然后,引入遗传算法中的交叉和变异算子,对原有的WPS算法进行改进。考虑到车辆的动态特性,基于三次B样条曲线的路径平滑处理使规划路径适合于固定翼无人机。仿真结果表明,该方法在考虑各种约束条件且产生的路径可飞行的情况下,对旋翼无人机和固定翼无人机都是有效的。四种算法的比较表明,在相同条件下,改进的WPS算法产生的轨迹要远远优于原始的WPS算法,GA和随机搜索方式。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第29期|445-457|共13页
  • 作者单位

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Aerosp Engn, Beijing 100081, Peoples R China|Minist Educ, Key Lab Dynam & Control Flight Vehicle, Beijing 100081, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Unmanned aerial vehicle (UAV) path planning; Modified wolf pack search (WPS) algorithm; Genetic algorithm (GA); Three dimensional (3D) space; Cubic B-spline curve;

    机译:无人机(UAV)路径规划;改进的狼群搜索(WPS)算法;遗传算法(GA);三维(3D)空间;三次B样条曲线;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号