首页> 外文期刊>Neurocomputing >Spotting anomalous ratings for rating systems by analyzing target users and items
【24h】

Spotting anomalous ratings for rating systems by analyzing target users and items

机译:通过分析目标用户和项目来发现评级系统的异常评级

获取原文
获取原文并翻译 | 示例

摘要

Online rating systems play an important role in recommender systems. Collaborative filtering recommender systems are highly vulnerable to "shilling" attacks in reality. Although attack detection based on the attacks have been extensively researched over the last decade, the studies on this issue have not reached an end. Furthermore, only using the existing features is not easy to improve their detection performance. In this paper, we present an unsupervised detection method to defend such attacks, which consists of two stages. Based on the existing features of user and item, more effective features are selected using adaptive structure learning which takes advantage of adaptive local and global structure learning. In the first stage, suspected users are determined by exploiting a density-based clustering method based on the selected features. Then, the selected features of item are applied to find out suspicious items in order to further spot the concerned attackers based on the result of the first stage. Finally, the attackers can be detected. Extensive experiments on the MovieLens-100K dataset demonstrate the effectiveness of the proposed approach as compare to competing methods. It is noteworthy that discovering interesting findings including anomalous ratings and items on Amazon dataset also is investigated. (C) 2017 Elsevier B.V. All rights reserved.
机译:在线评分系统在推荐系统中起着重要作用。协作式过滤推荐系统在现实中极易受到“先令”攻击的攻击。尽管基于攻击的攻击检测已在过去的十年中进行了广泛的研究,但有关此问题的研究仍未结束。此外,仅使用现有特征不容易提高其检测性能。在本文中,我们提出了一种防御此类攻击的无监督检测方法,该方法包括两个阶段。基于用户和商品的现有特征,利用自适应结构学习来选择更有效的特征,自适应结构学习利用自适应局部和全局结构学习。在第一阶段,通过利用基于所选特征的基于密度的聚类方法来确定可疑用户。然后,根据第一阶段的结果,应用选定的项目特征来查找可疑项目,以便进一步发现相关的攻击者。最后,可以检测到攻击者。在MovieLens-100K数据集上的大量实验证明了与竞争方法相比,该方法的有效性。值得注意的是,还对发现有趣的发现(包括异常评级和Amazon数据集上的项目)进行了调查。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第may31期|25-46|共22页
  • 作者单位

    Xian Univ Technol, Sch Comp Sci & Engn, Xian, Peoples R China|Xi An Jiao Tong Univ, Minist Educ Key Lab Intelligent Networks & Networ, Xian 710049, Peoples R China;

    Xi An Jiao Tong Univ, Minist Educ Key Lab Intelligent Networks & Networ, Xian 710049, Peoples R China;

    Xi An Jiao Tong Univ, Minist Educ Key Lab Intelligent Networks & Networ, Xian 710049, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender system; Adaptive structure learning; Shilling attack; Anomaly detection;

    机译:推荐系统;自适应结构学习;突击攻击;异常检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号