首页> 外文期刊>Neurocomputing >Uncovering anomalous rating behaviors for rating systems
【24h】

Uncovering anomalous rating behaviors for rating systems

机译:发现评级系统的异常评级行为

获取原文
获取原文并翻译 | 示例

摘要

Personalization collaborative filtering recommendation plays a key component in online rating systems, which also suffers from profile injection attacks in reality. Although anomalous rating detection for online rating systems has attracted increasing attention in recent years, detection performance of the existing methods has not reached an end. Eliminating the impact of interfering information on anomaly detection is a crucial issue for reducing false alarm rates. Moreover, detecting anomalous ratings for unlabeled and real-world data is always a big challenge. In this paper, we investigate a two-stage detection framework to spot anomalous rating profiles. Firstly, interfering rating profiles are determined by comprehensively analyzing the distributions of user activity, item popularity and special ratings in order to eliminate sparse ratings. Based on the reserved rating profiles, combining target item analysis and non-linear structure clustering is then adopted to further determine the concerned attackers. Extensive experimental comparisons in diverse attacks demonstrate the effectiveness of the proposed method compared with competing benchmarks. Additionally, discovering interesting findings including anomalous ratings and items on two real-world datasets, Amazon and TripAdvisor, is also investigated. (C) 2018 Elsevier B.V. All rights reserved.
机译:个性化协作过滤推荐是在线评分系统中的关键组成部分,实际上,它也遭受配置文件注入攻击。尽管近年来,用于在线评级系统的异常评级检测已引起越来越多的关注,但是现有方法的检测性能尚未达到终点。消除干扰信息对异常检测的影响是降低误报率的关键问题。此外,检测未标记和真实数据的异常评级始终是一个很大的挑战。在本文中,我们研究了一个两阶段的检测框架来发现异常评级轮廓。首先,通过全面分析用户活动,项目受欢迎程度和特殊等级的分布来确定干扰等级,以消除稀疏等级。基于保留的评级概况,然后结合目标项目分析和非线性结构聚类,进一步确定相关的攻击者。在各种攻击中的大量实验比较表明,与竞争基准相比,该方法的有效性。此外,还研究了在两个真实的数据集(亚马逊和TripAdvisor)上发现有趣的发现,包括异常评级和项目。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第25期|205-226|共22页
  • 作者单位

    Xian Univ Technol, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Xian Univ Technol, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Xian Univ Technol, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Xian Univ Technol, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Recommender system; Abnormality forensics; Shilling attack; Outlier detection;

    机译:推荐系统;异常取证;先令攻击;离群值检测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号