首页> 外文期刊>Neurocomputing >Discriminative latent semantic feature learning for pedestrian detection
【24h】

Discriminative latent semantic feature learning for pedestrian detection

机译:区分性潜在语义特征学习用于行人检测

获取原文
获取原文并翻译 | 示例

摘要

Features act as a key factor in pedestrian detection task. Most widely-used ones like HOG are manually designed and hard to be adaptive, thus now more attention has been paid to the features automatically learned on data. In this paper, a novel approach of learning discriminative features is proposed, addressing two main limitations of the methods in the literature. On one hand, unlike those methods of learning features on low-level pixels, we propose to learn features via a particular sparse coding algorithm enhanced on mid-level image representation, in order to obtain higher-level latent semantics and robustness; On the other hand, those methods usually utilize label information in model training such as deformable part model (DPM) with high computation cost. Instead, we propose to extend the learning process via a maximum margin criterion, in order to better encode discriminative information directly in features by optimizing them to be close to each other if from the same class and far from each other if from different classes. Furthermore, a boosted detection framework rather than the complex DPM is adopted to achieve both high accuracy and efficiency. The proposed approach achieves promising results on several standard pedestrian detection benchmarks. (C) 2017 Elsevier B.V. All rights reserved.
机译:功能是行人检测任务的关键因素。像HOG这样使用最广泛的工具是手动设计的,很难适应。因此,现在人们对自动从数据中学习的功能给予了更多关注。本文提出了一种学习判别特征的新方法,解决了文献中方法的两个主要局限性。一方面,与那些在低级像素上学习特征的方法不同,我们建议通过在中级图像表示上增强的特定稀疏编码算法来学习特征,以获得更高级别的潜在语义和鲁棒性。另一方面,那些方法通常在模型训练中利用标签信息,例如具有高计算成本的可变形零件模型(DPM)。取而代之的是,我们建议通过最大余量准则扩展学习过程,以便通过优化特征中的区别信息(如果来自同一类,则彼此接近,如果来自不同类,则彼此远离)来更好地直接对特征进行编码。此外,采用增强的检测框架而不是复杂的DPM来实现高精度和高效率。所提出的方法在几个标准的行人检测基准上取得了可喜的结果。 (C)2017 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2017年第may17期|126-138|共13页
  • 作者

    Zhu Chao; Peng Yuxin;

  • 作者单位

    Univ Sci & Technol Beijing, Sch Comp & Commun Engn, Beijing 100083, Peoples R China|Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China;

    Peking Univ, Inst Comp Sci & Technol, Beijing 100871, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Pedestrian detection; Feature learning; Latent semantics; Discriminative power;

    机译:行人检测;特征学习;潜在语义;判别力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号