首页> 外文期刊>Neurocomputing >Learning discriminative shape statistics distribution features for pedestrian detection
【24h】

Learning discriminative shape statistics distribution features for pedestrian detection

机译:学习判别形状统计分布特征以进行行人检测

获取原文
获取原文并翻译 | 示例

摘要

Discriminative feature plays an important role in object detection system and traditional tactics heavily depends on the hand-designed feature. Recent study shows that feature can be learned from data, and this idea opens a new way to deal with many computer vision problems. In this paper, we propose a novel feature which learns discriminative information based on data distribution and shape statistics for pedestrian detection. It makes use of data distribution which is rich of discriminative information from positive and negative samples, and also utilizes shape statistics which comes from average human template. The proposed method exploits the distribution in multiple channel image spaces, and learns an optimal hyper plane to separate pedestrians from background patches in specific area with shape statistics. It maintains the merit of simplicity in computation and also obtains powerful discriminative ability. Two versions of Shape Statistic Distribution features are proposed which are derived from Informed Haar-like feature, but more discriminative than the original one. Experimental results based on INRIA, ETH and Caltech-USA datasets show that our proposed methods can achieve state-of-art performance. Furthermore the running speed of our detector can reach at 22 fps for 480 x 640 images. (C) 2015 Elsevier B.V. All rights reserved.
机译:区分特征在目标检测系统中起着重要作用,而传统策略在很大程度上取决于手工设计的特征。最近的研究表明,可以从数据中学习功能,这一思想为处理许多计算机视觉问题开辟了一条新途径。在本文中,我们提出了一种新颖的功能,该功能可基于数据分布和形状统计信息来学习区分信息,以进行行人检测。它利用了丰富的数据分布,这些数据包含来自正样本和负样本的判别信息,还利用了来自普通人类模板的形状统计信息。所提出的方法利用了多通道图像空间中的分布,并通过形状统计学习了一种最佳超平面,以将行人与特定区域的背景斑块分开。它保持了计算简单性的优点,并具有强大的判别能力。提出了两个版本的“形状统计分布”特征,它们是从类似“通知的Haar”特征中派生的,但比原始特征更具区分性。基于INRIA,ETH和Caltech-USA数据集的实验结果表明,我们提出的方法可以实现最先进的性能。此外,对于480 x 640图像,我们的探测器的运行速度可以达到22 fps。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第5期|66-77|共12页
  • 作者单位

    Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China;

    Jiangsu Univ Sci, Sch Comp Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China;

    Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China;

    Jiangsu Univ Sci, Sch Comp Sci & Engn, Zhenjiang 212003, Jiangsu, Peoples R China;

    Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multiple channel feature; Shape Statistic Distribution feature; Feature learning;

    机译:多通道功能;形状统计分布功能;特征学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号