首页> 外文期刊>Neurocomputing >Supervised learning in multilayer spiking neural networks with inner products of spike trains
【24h】

Supervised learning in multilayer spiking neural networks with inner products of spike trains

机译:带有尖峰序列内部产物的多层尖峰神经网络中的监督学习

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in neurosciences have revealed that neural information in the brain is encoded through precisely timed spike trains, not only through the neural firing rate. This paper presents a new supervised, multi-spike learning algorithm for multilayer spiking neural networks, which can implement the complex spatio-temporal pattern learning of spike trains. The proposed algorithm firstly defines inner product operators to mathematically describe and manipulate spike trains, and then solves the problems of error function construction and backpropagation among multiple output spikes during learning. The algorithm is successfully applied to different temporal tasks, such as learning sequences of spikes and nonlinear pattern classification problems. The experimental results show that the proposed algorithm has higher learning accuracy and efficiency than the Multi-ReSuMe learning algorithm. It is effective for solving complex spatio-temporal pattern learning problems. (C) 2016 Elsevier B.V. All rights reserved.
机译:神经科学的最新进展表明,大脑中的神经信息是通过精确定时的尖峰序列编码的,而不仅是通过神经激发速率来编码的。本文提出了一种新型的多层尖峰神经网络的监督,多尖峰学习算法,该算法可以实现尖峰列车的复杂时空模式学习。该算法首先定义了内积算子,以数学方式描述和操纵尖峰序列,然后解决了学习过程中多个输出尖峰之间误差函数的构造和反向传播的问题。该算法已成功应用于不同的时间任务,例如学习尖峰序列和非线性模式分类问题。实验结果表明,该算法比Multi-ReSuMe学习算法具有更高的学习精度和效率。它对于解决复杂的时空模式学习问题非常有效。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号