首页> 外文期刊>Neurocomputing >Robust image recognition by L1-norm twin-projection support vector machine
【24h】

Robust image recognition by L1-norm twin-projection support vector machine

机译:L1-范数双投影支持向量机的鲁棒图像识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a L1-norm twin-projection support vector machine (TPSVM-L1) for robust representation and recognition of images. The robustness of our TPSVM-L1 method is mainly driven by the L1-norm based distance metric that is proven to be robust to noise and outliers in data. For discriminant twin projection learning, our TPSVM-L1 aims to compact L1-norm regularized intra-class scatter and separate L1-norm regularized inter-class scatter in addition to enabling the learning system to be robust against noise or outliers. As a result, an optimal pair of robust and descriptive linear projective subspaces or the most discriminating linear vector projections for constructing two hyper-planes can be trained. The twin-vector projection subspace is effectively achieved by an iterative approach. Note that the linear twin-projections can be used to extract features from images, and the hyper-planes can decide the categories of test data by embedding them onto the hyper-planes. Simulations on UCI and real image datasets verified the validity of our TPSVM-L1, compared with the other related twin SVM classification algorithms.
机译:在本文中,我们提出了一种L1范数双投影支持向量机(TPSVM-L1),用于图像的鲁棒表示和识别。我们的TPSVM-L1方法的鲁棒性主要由基于L1范数的距离度量驱动,事实证明,该度量标准对数据中的噪声和异常值具有鲁棒性。对于有区别的双投影学习,我们的TPSVM-L1旨在压缩L1范数正则化的类内散点并分离L1范数正则化的类间散点,并使学习系统能够抵抗噪声或离群值。结果,可以训练出一对健壮的和描述性的线性投影子空间的最佳对或用于构造两个超平面的最有区别的线性矢量投影。双矢量投影子空间是通过迭代方法有效实现的。请注意,线性双投影可以用于从图像中提取特征,超平面可以通过将测试数据嵌​​入到超平面来确定测试数据的类别。与其他相关的孪生SVM分类算法相比,对UCI和真实图像数据集的仿真证明了我们的TPSVM-L1的有效性。

著录项

  • 来源
    《Neurocomputing》 |2017年第5期|1-11|共11页
  • 作者单位

    Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China|Soochow Univ, Joint Int Res Lab Machine Learning & Neuromorph C, Suzhou 215006, Peoples R China|Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 210023, Jiangsu, Peoples R China;

    Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China|Soochow Univ, Joint Int Res Lab Machine Learning & Neuromorph C, Suzhou 215006, Peoples R China|Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 210023, Jiangsu, Peoples R China;

    Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China|Soochow Univ, Joint Int Res Lab Machine Learning & Neuromorph C, Suzhou 215006, Peoples R China|Collaborat Innovat Ctr Novel Software Technol & I, Nanjing 210023, Jiangsu, Peoples R China;

    Wuhan Univ Technol, Sch Econ, 122 Luoshi Rd, Wuhan 430070, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Twin-projection support vector machine; L1-norm regularization; Discriminant learning; Robust image recognition;

    机译:双投影支持向量机;L1-范数正则化;判别学习;鲁棒图像识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号