首页> 外文期刊>Neurocomputing >Nuclear norm-based matrix regression preserving embedding for face recognition
【24h】

Nuclear norm-based matrix regression preserving embedding for face recognition

机译:基于核范数的矩阵回归保留嵌入用于人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Recently, using linear reconstruction technique to construct intrinsic graph for projection-based dimensionality reduction (DR) has aroused broad interest in face recognition. However, current methods either lack robustness to corruptions or require to perform vectorization which causes loss of local geometrical information of images. To this end, a novel nuclear norm-based matrix regression preserving embedding (NN-MRPE) method is proposed in this paper. First, NN-MRPE constructs an intrinsic graph by using the nuclear norm to evaluate the residual errors to resist data corruptions. Second, a matrix-based embedding cost function is formulated to seek two transformation matrices which can preserve the geometrical structure reflected by the intrinsic graph exactly. Finally, based on the linear regression theory, we summarize a general DR framework called linear regression preserving embedding that preserves the intrinsic structure of data by recovering the reconstruction relationship in the original space. Specifically, many existing approaches are the special cases of the linear regression preserving embedding. Experiments on five public face databases with different types of corruptions are conducted to demonstrate the efficiency of the proposed NN-MRPE method. (C) 2018 Elsevier B.V. All rights reserved.
机译:近来,使用线性重构技术来构造用于基于投影的降维(DR)的内在图已经引起了人们对面部识别的广泛兴趣。然而,当前的方法或者缺乏对破坏的鲁棒性,或者需要执行矢量化,这导致图像的局部几何信息的丢失。为此,本文提出了一种新的基于核规范的矩阵回归保存嵌入(NN-MRPE)方法。首先,NN-MRPE通过使用核规范来评估残差以抵抗数据损坏,从而构造一个内在图。其次,建立了基于矩阵的嵌入代价函数,以寻求两个变换矩阵,它们可以准确地保留内在图反映的几何结构。最后,基于线性回归理论,我们总结了一个称为线性回归保留嵌入的通用DR框架,该框架通过恢复原始空间中的重建关系来保留数据的固有结构。具体而言,许多现有方法是线性回归保留嵌入的特殊情况。在五个具有不同类型腐败行为的人脸数据库上进行了实验,以证明所提出的NN-MRPE方法的效率。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第15期|279-290|共12页
  • 作者单位

    Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 611756, Sichuan, Peoples R China;

    Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 611756, Sichuan, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China;

    Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nuclear norm; Matrix regression; Dimensionality reduction; Face recognition;

    机译:核范数;矩阵回归;降维;人脸识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号