首页> 外文期刊>Image Processing, IEEE Transactions on >Robust Nuclear Norm-Based Matrix Regression With Applications to Robust Face Recognition
【24h】

Robust Nuclear Norm-Based Matrix Regression With Applications to Robust Face Recognition

机译:基于核规范的鲁棒矩阵回归及其在人脸识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Face recognition (FR) via regression analysis-based classification has been widely studied in the past several years. Most existing regression analysis methods characterize the pixelwise representation error via l1 -norm or l2 -norm, which overlook the 2D structure of the error image. Recently, the nuclear norm-based matrix regression model is proposed to characterize low-rank structure of the error image. However, the nuclear norm cannot accurately describe the low-rank structural noise when the incoherence assumptions on the singular values does not hold, since it overpenalizes several much larger singular values. To address this problem, this paper presents the robust nuclear norm to characterize the structural error image and then extends it to deal with the mixed noise. The majorization–minimization (MM) method is applied to derive a iterative scheme for minimization of the robust nuclear norm optimization problem. Then, an efficiently alternating direction method of multipliers (ADMM) method is used to solve the proposed models. We use weighted nuclear norm as classification criterion to obtain the final recognition results. Experiments on several public face databases demonstrate the effectiveness of our models in handling with variations of structural noise (occlusion, illumination, and so on) and mixed noise.
机译:通过基于回归分析的分类的面部识别(FR)在过去几年中已得到广泛研究。现有的大多数回归分析方法都是通过l1 -norm或l2 -norm来表征像素化表示错误,这些错误会忽略错误图像的2D结构。最近,提出了基于核范数的矩阵回归模型来表征误差图像的低秩结构。但是,当对奇异值的不相干性假设不成立时,核规范无法准确地描述低阶结构噪声,因为它过度惩罚了几个更大的奇异值。为了解决这个问题,本文提出了一种鲁棒的核规范来表征结构误差图像,然后对其进行扩展以处理混合噪声。应用最小化(MM)方法来得出迭代方案,以最小化鲁棒核规范优化问题。然后,采用有效的乘数交替方向法(ADMM)求解所提出的模型。我们使用加权核规范作为分类标准,以获得最终的识别结果。在多个公众面部数据库上进行的实验证明了我们的模型在处理结构噪声(遮挡,照明等)和混合噪声变化时的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号