首页> 外文期刊>Neurocomputing >Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition
【24h】

Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition

机译:变分模式分解和加权在线序贯极限学习机,用于电能质量事件模式识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, variational mode decomposition (VMD) and a newly developed weighted online sequential extreme learning machine (WOSELM) are integrated to detect and classify the power quality events (PQEs) in real-time. The feasibility of VMD is validated by applying on PQEs (such as harmonic and flicker) for the estimation of magnitude, phase,and frequency. Estimated results prove the usefulness of VMD and further four efficacious power quality indices of the band-limited intrinsic mode functions (BLIMFs) are extracted. The indices are used for the classification of single and multiple PQEs using different advanced classifiers. The recognition architecture of variational mode decomposition with weighted online sequential extreme learning machine (VMD-WOSELM) is tested and compared withother methods. The robust anti-noise performance, faster learning speed, lesser computational complexity, superior classification accuracy and short event detection time prove that the proposed VMD-WOSELM method can be implemented in electrical power systems. Finally, a PC interface based hardware prototype is developed to verify the cogency of the proposed method in real time. The feasibility of the proposed method is tested and validated by both the simulation and laboratory experiments. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文将变分模式分解(VMD)和新开发的加权在线顺序极限学习机(WOSELM)集成在一起,以实时检测和分类电能质量事件(PQE)。 VMD的可行性通过在PQE(例如谐波和闪烁)上进行幅度,相位和频率的估计来验证。估计结果证明了VMD的有效性,并进一步提取了带限本征函数(BLIMF)的四个有效电能质量指标。索引用于使用不同的高级分类器对单个和多个PQE进行分类。测试了加权在线序贯极限学习机(VMD-WOSELM)的变模分解识别架构,并将其与其他方法进行了比较。强大的抗噪性能,更快的学习速度,更低的计算复杂度,优异的分类精度和较短的事件检测时间证明了所提出的VMD-WOSELM方法可以在电力系统中实现。最后,开发了基于PC接口的硬件原型,以实时验证所提出方法的有效性。仿真和实验室实验均验证了该方法的可行性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号