首页> 外文期刊>IEEE transactions on industrial informatics >Automatic Power Quality Events Recognition Using Modes Decomposition Based Online P-Norm Adaptive Extreme Learning Machine
【24h】

Automatic Power Quality Events Recognition Using Modes Decomposition Based Online P-Norm Adaptive Extreme Learning Machine

机译:自动电能质量事件使用基于Modes的在线P-Norm自适应极限学习机识别

获取原文
获取原文并翻译 | 示例

摘要

This article presents an automatic recognition of power quality events (PQEs) by integrating variational mode decomposition (VMD) with Hilbert transform (HT) and the proposed online P-norm adaptive extreme learning machine (OPAELM). The robust parameters estimation capability from the highly nonstationary PQE patterns is presented using VMDHT method and a novel mode selection scheme is introduced based on the correlation coefficient. Three most efficient power quality indices are extracted and fed as an input to train and test the OPAELM classifier with a few existing advanced classifiers. The distinctive modes extraction, low computational burden, robust antinoise performance, short event recognition time, and outstanding recognition capability are the prime superiority expediencies of the VMDHT-OPAELM method. Finally, the proposed method is developed in Xilinx integrated synthesis environment (ISE) Design Suite 14.5 configured with MATLAB/Simulink software environment and implemented in a high-speed field-programmable gate array digital circuitry hardware platform to validate the cogency in real time.
机译:本文通过将变分模式分解(VMD)与Hilbert Transform(HT)和所提出的在线P-Norm自适应极限学习机(OPAELM)集成,通过集成变分模式分解(VMD)来自动识别电能质量事件(PQE)。使用VMDHT方法呈现来自高度非间断PQE模式的鲁棒参数估计能力,并且基于相关系数引入新颖的模式选择方案。提取三个最有效的电源质量指标并将其作为输入以培训和测试OPAELM分类器,其中包含一些现有的高级分类器。独特的模式提取,低计算负担,强大的抗反建性能,短事件识别时间和出色的识别能力是VMDHT-OPAELM方法的主要优势。最后,该方法是在Xilinx集成合成环境(ISE)设计套件14.5中开发的,配置了Matlab / Simulink软件环境,并在高速现场可编程门阵列数字电路硬件平台中实现,以实时验证核对。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号