首页> 外文期刊>Neurocomputing >Speech emotion recognition based on an improved brain emotion learning model
【24h】

Speech emotion recognition based on an improved brain emotion learning model

机译:基于改进的大脑情感学习模型的语音情感识别

获取原文
获取原文并翻译 | 示例

摘要

Human-robot emotional interaction has developed rapidly in recent years, in which speech emotion recognition plays a significant role. In this paper, a speech emotion recognition method based on an improved brain emotional learning (BEL) model is proposed, which is inspired by the emotional processing mechanism of the limbic system in the brain. The reinforcement learning rule of BEL model, however, makes it have poor adaptation and affects its performance. To solve these problems, Genetic Algorithm (GA) is employed to update the weights of BEL model. The proposal is tested on the CASIA Chinese emotion corpus, SAVEE emotion corpus, and FAU Aibo dataset, in which MFCC related features and their 1st order delta coefficients are extracted. In addition, the proposal is tested on INTERSPEECH 2009 standard feature set, in which three dimensionality reduction methods of Linear Discriminant Analysis (LDA), Principal Component Analysis (PCA), and PCA+LDA are used to reduce the dimension of feature set. The experimental results show that the proposed method obtains average recognition accuracy of 90.28% (CASIA), 76.40% (SAVEE), and 71.05% (FAU Aibo) for speaker-dependent (SD) speech emotion recognition and the highest average accuracy of 38.55% (CASIA), 44.18% (SAVEE), 64.60% (FAU Aibo) for speaker-independent (SI) speech emotion recognition are obtained, which shows that the proposal is feasible in speech emotion recognition. (C) 2018 Elsevier B.V. All rights reserved.
机译:近年来,人机情感互动发展迅速,其中语音情感识别起着重要作用。本文提出了一种基于改进的大脑情感学习(BEL)模型的语音情感识别方法,该方法受到了大脑边缘系统的情感处理机制的启发。然而,BEL模型的强化学习规则使其适应性较差并影响其性能。为了解决这些问题,采用遗传算法(GA)来更新BEL模型的权重。该提案在CASIA中国情感语料库,SAVEE情感语料库和FAU Aibo数据集上进行了测试,其中提取了MFCC相关特征及其一阶增量系数。此外,该提案已在INTERSPEECH 2009标准功能集上进行了测试,其中使用了线性判别分析(LDA),主成分分析(PCA)和PCA + LDA的三种降维方法来缩小功能集的尺寸。实验结果表明,该方法对说话人相关(SD)语音情感识别的平均识别准确率分别为90.28%(CASIA),76.40%(SAVEE)和71.05%(FAU Aibo),最高平均准确度为38.55% (CASIA),44.18%(SAVEE),64.60%(FAU Aibo)的独立于说话人的(SI)语音情感识别,表明该建议在语音情感识别中是可行的。 (C)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第2期|145-156|共12页
  • 作者单位

    China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China;

    China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China;

    China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China;

    China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China;

    Hunan Univ Arts & Sci, Sch Elect & Informat Engn, Changde 415000, Peoples R China;

    China Univ Geosci, Sch Automat, Wuhan 430074, Hubei, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Speech; Emotion recognition; Brain-inspired; Brain emotion learning; Genetic algorithm;

    机译:言语;情感识别;脑启发;脑情感学习;遗传算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号