首页> 外文期刊>Neurocomputing >Structure preserving unsupervised feature selection
【24h】

Structure preserving unsupervised feature selection

机译:保留结构的无监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

Spectral analysis was usually used to guide unsupervised feature selection. However, the performances of these methods are not always satisfactory due to that they may generate continuous pseudo labels to approximate the discrete real labels. In this paper, a novel unsupervised feature selection method is proposed based on self-expression model. Unlike existing spectral analysis based methods, we utilize self-expression model to capture the relationships between the features without learning the cluster labels. Specifically, each feature can be reconstructed by using a linear combination of all the features in the original feature space, and a representative feature should give a large weight to reconstruct other features. Besides, a structure preserved constraint is incorporated into our model for keeping the local manifold structure of the data. Then an efficient alternative iterative algorithm is utilized to solve our proposed model with the theoretical analysis on its convergence. The experimental results on different datasets show the effectiveness of our method.
机译:光谱分析通常用于指导无监督的特征选择。但是,这些方法的性能并不总是令人满意,因为它们可能会生成连续的伪标签以逼近离散的实标签。本文提出了一种基于自表达模型的无监督特征选择方法。与现有的基于频谱分析的方法不同,我们利用自我表达模型来捕获特征之间的关系,而无需学习聚类标签。具体而言,可以通过使用原始特征空间中所有特征的线性组合来重构每个特征,并且代表性特征应赋予较大的权重以重构其他特征。此外,结构保留约束被并入我们的模型中,以保持数据的局部流形结构。然后利用一种有效的替代迭代算法,通过对其收敛性的理论分析,对我们提出的模型进行求解。在不同数据集上的实验结果表明了我们方法的有效性。

著录项

  • 来源
    《Neurocomputing》 |2018年第2期|36-45|共10页
  • 作者单位

    Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China;

    Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China;

    Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Unsupervised feature selection; Self expression model; Structure preserving;

    机译:无监督特征选择;自表达模型;结构保留;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号