首页> 外文期刊>Neurocomputing >Low-rank structure preserving for unsupervised feature selection
【24h】

Low-rank structure preserving for unsupervised feature selection

机译:保留低等级结构以进行无监督的特征选择

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised feature selection has been widely applied to machine learning and pattern recognition, as it does not require class labels. The majority of the popular unsupervised feature selection methods focus on various forms of reconstruction, and minimize the reconstruction residual by discarding features with low contributions. However, they cannot effectively preserve the data distribution in multiple sub-spaces, because the sample structure information is not substantially utilized to constrain the selected features. In this paper, we propose a low-rank structure preserving method for unsupervised feature selection (LRPFS) to address this shortcoming. The data matrix consisting selected features is assumed as a dictionary, which is learned by a low-rank constraint to preserve the subspace structure. Meanwhile, we further leverage the sparse penalty to remove the redundancy features, and thus obtain the discriminative features with intrinsic structures. In this way, the sample distribution can be preserved by low-rank constraint more precisely via using discriminative features. In turn, the refined sample structure boosts the selection of more representative features. The effectiveness of our method is supported by both theoretical and experimental results. (C) 2018 Elsevier B.V. All rights reserved.
机译:无监督特征选择已被广泛应用于机器学习和模式识别,因为它不需要类标签。大多数流行的无监督特征选择方法着眼于各种形式的重建,并通过丢弃低贡献的特征来最小化重建残差。但是,由于不能充分利用样本结构信息来约束所选特征,因此它们不能有效地保留多个子空间中的数据分布。在本文中,我们提出了一种用于无监督特征选择(LRPFS)的低秩结构保留方法,以解决该缺点。包含选定特征的数据矩阵假定为字典,通过低秩约束对其进行学习以保留子空间结构。同时,我们进一步利用稀疏惩罚去除冗余特征,从而获得具有固有结构的判别特征。这样,通过使用区分特征,可以通过低秩约束更精确地保留样本分布。反过来,经过精炼的样本结构也有助于选择更具代表性的特征。理论和实验结果都证明了我们方法的有效性。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号