首页> 外文期刊>Neurocomputing >Cluster structure preserving unsupervised feature selection for multi-view tasks
【24h】

Cluster structure preserving unsupervised feature selection for multi-view tasks

机译:集群结构保留多视图任务的非监督特征选择

获取原文
获取原文并翻译 | 示例

摘要

Multi-view or multi-modal tasks exist in many areas of pattern analysis as the advancement of feature acquisition or extraction. These tasks are usually confronted with the issue of curse of dimensionality. In this work we consider the unsupervised feature selection problem for multi-view tasks. As most of the existing feature selection methods can only handle single-view data, we develop a new algorithm, called Cluster Structure Preserving Unsupervised Feature Selection (CSP-UFS). To leverage the complementary information between multiple views in unsupervised scenarios, we incorporate discriminative analysis, spectral clustering and correlation information between multiple views into a unified framework. Intuitionally speaking, the cluster structures of data in feature spaces reflect the discriminative information of distinct classes. Thus we introduce spectral clustering to discover the cluster structure and use discriminative analysis to preserve the structure. We design an alternating optimization algorithm to solve the proposed objective function. Experimental results on different datasets show the effectiveness of the proposed algorithm. (C) 2015 Elsevier B.V. All rights reserved.
机译:随着特征获取或提取的发展,模式分析的许多领域都存在多视图或多模式任务。这些任务通常面临维度诅咒的问题。在这项工作中,我们考虑了多视图任务的无监督特征选择问题。由于大多数现有特征选择方法只能处理单视图数据,因此我们开发了一种新算法,称为“保留非监督特征的聚类结构选择(CSP-UFS)”。为了在无人监督的情况下利用多个视图之间的补充信息,我们将判别分析,频谱聚类和多个视图之间的相关信息合并到一个统一的框架中。直觉上来说,特征空间中数据的聚类结构反映了不同类的判别信息。因此,我们引入光谱聚类来发现聚类结构,并使用判别分析来保留该结构。我们设计了一种交替优化算法来解决所提出的目标函数。在不同数据集上的实验结果表明了该算法的有效性。 (C)2015 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2016年第29期|686-697|共12页
  • 作者单位

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

    Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China|Tianjin Key Lab Cognit Comp & Applicat, Tianjin 300072, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-view; Feature selection; Unsupervised; Cluster structure;

    机译:多视图;特征选择;无监督;集群结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号