首页> 外文期刊>Neurocomputing >Torque sensorless decentralized neuro-optimal control for modular and reconfigurable robots with uncertain environments
【24h】

Torque sensorless decentralized neuro-optimal control for modular and reconfigurable robots with uncertain environments

机译:不确定环境下模块化和可重构机器人的无扭矩分散神经最优控制

获取原文
获取原文并翻译 | 示例

摘要

A technical challenge of addressing the decentralized optimal control problem for modular and reconfigurable robots (MRRs) during environmental contacts is associated with optimal compensation of the uncertain contact force without using force/torque sensors. In this paper, a decentralized control approach is presented for torque sensorless MRRs in contact with uncertain environment via an adaptive dynamic programming (ADP)-based neuro-optimal compensation strategy. The dynamic model of the MRRs is formulated based on a novel joint torque estimation method, which is deployed for each joint model, and the joint dynamic information is utilized effectively to design the feedback controllers, thus making the decentralized optimal control problem of the environmental contacted MRR systems be formulated as an optimal compensation issue of model uncertainty. By using the ADP method, a local online policy iteration algorithm is employed to solve the Hamilton-Jacobi-Bellman (HJB) equation with a modified cost function, which is approximated by constructing a critic neural network, and then the approximate optimal control policy can be derived. The asymptotic stability of the closed-loop MRR system is proved by using the Lyapunov theory. At last, simulations and experiments are performed to verify the effectiveness of the proposed method. (C) 2017 Elsevier B.V. All rights reserved.
机译:解决在环境接触过程中模块化和可重构机器人(MRR)的分散式最优控制问题的一项技术挑战与不使用力/转矩传感器的不确定接触力的最佳补偿相关。在本文中,提出了一种分散控制方法,该方法通过基于自适应动态规划(ADP)的神经最优补偿策略,针对与不确定环境接触的无扭矩传感器MRR。基于一种新颖的联合扭矩估计方法,制定了磁阻变动力学模型,并将其应用于每个联合模型,并有效地利用联合动态信息设计反馈控制器,从而使得接触环境的分散最优控制问题成为可能。 MRR系统被公式化为模型不确定性的最佳补偿问题。通过使用ADP方法,采用局部在线策略迭代算法来求解具有修改后的成本函数的Hamilton-Jacobi-Bellman(HJB)方程,该方程可通过构造评论器神经网络进行近似,然后近似最优控制策略可以被派生。利用Lyapunov理论证明了闭环MRR系统的渐近稳定性。最后,通过仿真和实验验证了所提方法的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号