首页> 外文期刊>Neurocomputing >Effective community division based on improved spectral clustering
【24h】

Effective community division based on improved spectral clustering

机译:基于改进的光谱聚类的有效社区划分

获取原文
获取原文并翻译 | 示例

摘要

Not only does attribute of nodes affect the effectiveness and efficiency of community division, but also the relationship of them has a great impact on it. Clusters of arbitrary shape can be identified by the Spectral Clustering (SC). However, k-means clustering used in SC still could result in local optima, and the parameters in Radial Basis Function need to be determined by trial and error. In order to make such algorithm better fit into community division of social network, we try to merge attribute and relationship of node and optimize the ability of spectral clustering to get the global solution, thus a new community clustering algorithm called Spectral Clustering Based on Simulated Annealing and Particle swarm optimization (SCBSP) is proposed. The proposed algorithm is adapted to social networking division. In related experiments, the proposed algorithm, which enhances the global searching ability, has better global convergence and makes better performance in community division than original spectral clustering. (c) 2017 Elsevier B.V. All rights reserved.
机译:节点的属性不仅影响社区划分的有效性和效率,而且节点之间的关系也对其产生很大的影响。可以通过光谱聚类(SC)识别任意形状的聚类。然而,SC中使用的k均值聚类仍然可能导致局部最优,并且径向基函数中的参数需要通过反复试验来确定。为了使这种算法更适合社交网络的社区划分,我们尝试合并节点的属性和关系,并优化频谱聚类的能力以获得全局解决方案,因此,提出了一种新的称为基于模拟退火的频谱聚类的社区聚类算法。提出了粒子群优化算法(SCBSP)。该算法适用于社交网络的划分。在相关实验中,与原始谱聚类相比,该算法增强了全局搜索能力,具有更好的全局收敛性,并且在社区划分中具有更好的性能。 (c)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号