首页> 外文期刊>Neurocomputing >State of the art on road traffic sensing and learning based on mobile user network log data
【24h】

State of the art on road traffic sensing and learning based on mobile user network log data

机译:基于移动用户网络日志数据的道路交通感知和学习的最新技术

获取原文
获取原文并翻译 | 示例

摘要

AbstractWith the improvement of the storage and big data processing technology, mobile operators are able to extract and store a large amount of mobile network generated user behavior data, in order to develop various intelligent applications. One interesting application based on these data is traffic sensing, which uses techniques of learning human mobility patterns from updated location information in network interaction log data. Mobile networks, under which a huge amount of frequently updated location information of mobile users are tracked,can provide complete coverage to estimate traffic condition on roads and highways. This paper studies potential challenges and opportunities in intelligent traffic sensing from the data science point of view with mobile network generated data. Firstly, we classify the data resources available in the commercial radio network according to different taxonomy criteria. Then we outline the broken-down problems that fit in the framework of traffic sensing based on mobile user network log data. We study the existing data processing and learning algorithms on extracting traffic condition information from a large amount of mobile network log data. Finally we make suggestion on potential future work for traffic sensing on data from mobile networks. We believe the techniques and insights provided here will inspire the research community in data science to develop the machine learning models of traffic sensing on the widely collected mobile user behavior data.
机译: 摘要 随着存储和大数据处理技术的改进,移动运营商能够提取和存储大量由移动网络生成的用户行为数据,以便开发各种智能应用。基于这些数据的一个有趣的应用是流量感测,它使用从网络交互日志数据中的更新的位置信息中学习人类移动性模式的技术。跟踪大量移动用户频繁更新的位置信息的移动网络可以提供完整的覆盖范围,以估算道路和高速公路上的交通状况。本文从数据科学的角度,利用移动网络生成的数据,研究了智能交通感知中的潜在挑战和机遇。首先,我们根据不同的分类标准对商用无线电网络中可用的数据资源进行分类。然后,我们概述了适合基于移动用户网络日志数据的流量感测框架中的细分问题。我们研究了从大量移动网络日志数据中提取交通状况信息的现有数据处理和学习算法。最后,我们对移动网络数据流量感测的未来潜在工作提出建议。我们相信,此处提供的技术和见解将启发数据科学领域的研究人员,根据广泛收集的移动用户行为数据开发交通感知的机器学习模型。

著录项

  • 来源
    《Neurocomputing》 |2018年第22期|110-118|共9页
  • 作者

    Jin Huang; Ming Xiao;

  • 作者单位

    Information Science and Engineering Department, School of Electrical Engineering, KTH Royal Institute of Technology;

    Information Science and Engineering Department, School of Electrical Engineering, KTH Royal Institute of Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mobile network log; Traffic sensing; Traffic estimation; CDR; IPDR; Big data;

    机译:移动网络日志;流量感知;流量估计;CDR;IPDR;大数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号