首页> 外文期刊>Neurocomputing >Matrix measure based exponential stabilization for complex-valued inertial neural networks with time-varying delays using impulsive control
【24h】

Matrix measure based exponential stabilization for complex-valued inertial neural networks with time-varying delays using impulsive control

机译:脉冲控制的时变时滞复数值惯性神经网络的基于矩阵测度的指数镇定

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the problem on the exponential stabilization of complex-valued inertial neural networks with time-varying delays via impulsive control is studied. By virtue of an appropriate variable transformation, the original inertial neural network is transformed into the first order complex-valued differential system. Based on matrix measure and applying impulsive differential inequality, some easily verifiable algebraic criteria on delay-dependent conditions are derived to ensure the global exponential stabilization for the addressed neural networks using impulsive control. Moreover, the different unstable equilibrium point can also be exponentially stabilized by using the different impulsive controllers and the exponential convergence rate index is also estimated. Finally, two numerical examples with simulations are presented to show the effectiveness of the obtained results. (C) 2017 Elsevier B.V. All rights reserved.
机译:本文研究了具有时滞的时滞复数值惯性神经网络通过脉冲控制的指数稳定问题。借助于适当的变量转换,原始惯性神经网络被转换为一阶复数值微分系统。基于矩阵测度并应用脉冲微分不等式,导出了一些易于验证的关于时滞相关条件的代数准则,以确保使用脉冲控制的寻址神经网络具有全局指数稳定性。此外,通过使用不同的脉冲控制器,也可以指数稳定不同的不稳定平衡点,并且还可以估计指数收敛速率指数。最后,给出了两个带有仿真的数值示例,以证明所获得结果的有效性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号