首页> 外文期刊>Neurocomputing >Multiagent-consensus-MapReduce-based attribute reduction using co-evolutionary quantum PSO for big data app
【24h】

Multiagent-consensus-MapReduce-based attribute reduction using co-evolutionary quantum PSO for big data app

机译:大数据应用的基于协进化量子PSO的基于Multiagent共识MapReduce的属性约简

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe attribute reduction for big data applications has become an urgent challenge in pattern recognition, machine learning and data mining. In this paper, we introduce the multi-agent consensus MapReduce optimization model and co-evolutionary quantum PSO with self-adaptive memeplexes for designing the attribute reduction method, and propose a multiagent-consensus-MapReduce-based attribute reduction algorithm (MCMAR). Firstly, the co-evolutionary quantum PSO with self-adaptive memeplexes is designed for grouping particles into different memeplexes, which aims to explore the search space and locate the global best region during the attribute reduction of big datasets. Secondly, the four layers neighborhood radius framework with compensatory scheme is constructed to partition big attribute sets by exploiting the interdependency among multiple-relevant-attribute sets. Thirdly, a novel multi-agent consensus MapReduce optimization model is adopted to perform the multiple-relevance-attribute reduction, in which five kinds of agents are used to conduct the ensemble co-evolutionary optimization. So the uniform reduction framework of different agents’ co-evolutionary game under the bounded rationality is further refined. Fourthly, the approximation MapReduce parallelism mechanism is permitted to formalize to the multi-agent co-evolutionary consensus structure, interaction and adaptation, which enhances different agents to share their solutions. Finally, extensive experimental studies substantiate the effectiveness and accuracy of MCMAR on some well-known benchmark datasets. Moreover, successful applications in big medical datasets are expected to dramatically scaling up MCMAR for complex infant brain MRI in terms of efficiency and feasibility.
机译: 摘要 大数据应用程序的属性缩减已成为模式识别,机器学习和数据挖掘中的紧迫挑战。本文介绍了基于多智能体共识的MapReduce优化模型和具有自适应memeplex的协同进化量子粒子群算法设计属性约简方法,并提出了一种基于多智能体共识-MapReduce的属性约简算法。首先,设计了具有自适应memeplexes的共进化量子PSO,用于将粒子分组为不同的memeplexes,其目的是在大数据集的属性约简过程中探索搜索空间并找到全局最佳区域。其次,通过利用多相关属性集之间的相互依赖关系,构造了具有补偿方案的四层邻域半径框架,对大属性集进行了划分。第三,采用一种新颖的多智能体共识MapReduce优化模型进行多相关性属性约简,其中使用五种智能体进行整体协同进化优化。因此,在有限理性下,不同主体共同进化博弈的统一约简框架得到了进一步完善。第四,允许近似MapReduce并行机制正式化为多智能体协同进化共识结构,交互和适应,从而增强了不同智能体共享其解决方案的能力。最后,大量的实验研究证实了MCMAR在一些知名基准数据集上的有效性和准确性。此外,在大型医学数据集中的成功应用有望从效率和可行性方面显着扩大用于复杂婴儿脑部MRI的MCMAR。

著录项

  • 来源
    《Neurocomputing》 |2018年第10期|136-153|共18页
  • 作者单位

    School of Computer Science and Technology, Nantong University,State Key Laboratory for Novel Software Technology, Nanjing University,Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University;

    Computational Intelligence and Brain-Computer Interface (CIBCI) Center, University of Technology;

    School of Computer Science and Technology, Nantong University,Provincial Key Laboratory for Computer Information Processing Technology, Soochow University;

    School of Computer Science and Technology, Nantong University;

    School of Computer Science and Technology, Nantong University,Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-agent consensus MapReduce model; Co-evolutionary quantum PSO; Self-adaptive memeplexes; Neighborhood radius with compensatory scheme; Ensemble co-evolutionary optimization of attribute reduction;

    机译:多智能体共识MapReduce模型;协同进化量子PSO;自适应Memeplexes;带补偿方案的邻域半径;集合属性约简的协同进化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号