机译:大数据应用的基于协进化量子PSO的基于Multiagent共识MapReduce的属性约简
School of Computer Science and Technology, Nantong University,State Key Laboratory for Novel Software Technology, Nanjing University,Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology,Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University;
Computational Intelligence and Brain-Computer Interface (CIBCI) Center, University of Technology;
School of Computer Science and Technology, Nantong University,Provincial Key Laboratory for Computer Information Processing Technology, Soochow University;
School of Computer Science and Technology, Nantong University;
School of Computer Science and Technology, Nantong University,Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, Nanjing University of Science and Technology;
Multi-agent consensus MapReduce model; Co-evolutionary quantum PSO; Self-adaptive memeplexes; Neighborhood radius with compensatory scheme; Ensemble co-evolutionary optimization of attribute reduction;
机译:结合量子精英青蛙和云模型算子的高效属性自适应共进化约简算法
机译:深度跃迁的PSO与近邻Memeplex的深度神经认知协同进化,以减少模糊属性。
机译:用最近邻的MemePlex跳水跳跃PSO模糊属性减少的深神经认知共同演变
机译:大规模最小属性约简优化的新型量子合作协同进化算法
机译:使用地震属性改善计算机辅助地震解释的方法:多属性显示,频谱数据归约以及量化结构变形和速度各向异性的属性。
机译:量子混合PSO与模糊k-NN方法相结合在宫颈癌检测中的特征选择和细胞分类
机译:属性约简:一种水平数据分解方法