首页> 外文期刊>Neural processing letters >A Brain-Inspired Method of Facial Expression Generation Using Chaotic Feature Extracting Bidirectional Associative Memory
【24h】

A Brain-Inspired Method of Facial Expression Generation Using Chaotic Feature Extracting Bidirectional Associative Memory

机译:一种基于大脑的面部表情表达方法,该方法利用混沌特征提取双向联想记忆

获取原文
获取原文并翻译 | 示例

摘要

Human cognitive system adapts many different environments by exhibiting a broad range of behaviors according to the context. These behaviors vary from general abstractions referred as prototypes to specific perceptual patterns referred as exemplars. A chaotic feature extracting associative memory is proposed to mimic human brain in generating prototype and exemplar facial expressions. This model automatically extracts features of each category of images related to a specific subject and expression. In the training phase, the features are extracted as fixed points. In recall phase, the output attractor of the network ranges from fixed point which results in a prototype facial image, to chaotic attractors which lead to generating exemplar faces. The generative model is applied to enrich a facial image dataset in terms of variability by generating various virtual patterns, in case that only one image per subject is provided. A face recognition task is implemented to compare the enriched and original dataset in training classifiers. Our results show that recognition accuracy increases from 32 to 100% when exemplars generated by the proposed model are used to enrich the training dataset.
机译:人类认知系统通过根据上下文表现出广泛的行为来适应许多不同的环境。这些行为从一般的抽象(称为原型)到特定的感知模式(称为示例)不等。提出了一种提取联想记忆的混沌特征来模仿人的大脑,以产生原型和典型的面部表情。该模型自动提取与特定主题和表情相关的每种图像类别的特征。在训练阶段,将特征提取为固定点。在召回阶段,网络的输出吸引子范围从固定点(生成原型人脸图像)到混沌吸引子(导致生成示例性面孔)。在每个对象仅提供一个图像的情况下,将生成模型应用于通过生成各种虚拟图案来丰富可变性方面的面部图像数据集。实施面部识别任务以比较训练分类器中的丰富数据集和原始数据集。我们的结果表明,当使用所提出的模型生成的样本来丰富训练数据集时,识别准确率将从32%提高到100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号