首页> 外文期刊>Neural processing letters >Semi-supervised Fuzzy Min-Max Neural Network for Data Classification
【24h】

Semi-supervised Fuzzy Min-Max Neural Network for Data Classification

机译:用于数据分类的半监督模糊MIN-MAX神经网络

获取原文
获取原文并翻译 | 示例

摘要

Learning from the lack of labeled data is a challenging task which often limits the performance of the classifier. Since the unlabeled data is easy to obtain, using both of the labeled and unlabeled data in the training process provide a way to solve this problem. In this paper, a semi-supervised classification method based on fuzzy min-max neural network (SS-FMM) is proposed. In SS-FMM, the network has been modified for handling both of the labeled and unlabeled data. In addition, the staged feedback process is designed to modify the network structure of the traditional fuzzy min-max neural network. A staged-threshold function designed in SS-FMM, the hyperbox pruning process and the hyperbox relabeling process can be started dynamically. Moreover, the hyperboxes relabeling process and the hyperbox pruning process are designed to maximize using the unlabeled data and control the amount of the hyperboxes. In order to testify the effectiveness of SS-FMM, various experiments are carried out with several benchmark data sets. In addition, SS-FMM has been applied on the internal inspection data of our system. The results show that SS-FMMM has got good performance.
机译:从标记数据缺乏学习是一个具有挑战性的任务,通常限制分类器的性能。由于未标记的数据易于获得,因此使用培训过程中的两个标记和未标记的数据提供了一种解决此问题的方法。本文提出了一种基于模糊MIN-MAX神经网络(SS-FMM)的半监督分类方法。在SS-FMM中,已修改网络以处理标记和未标记的数据。此外,暂存的反馈过程旨在修改传统模糊MIN-MAX神经网络的网络结构。可以动态启动在SS-FMM中设计的阶段阈值函数,超高框修剪过程和超高箱重新标记过程。此外,重新标记过程和超高孔修剪过程的高孔设计为使用未标记的数据最大限度地控制,并控制超高箱的量。为了验证SS-FMM的有效性,通过多个基准数据集进行各种实验。此外,SS-FMM已应用于我们系统的内部检查数据。结果表明,SS-FMMM具有良好的性能。

著录项

  • 来源
    《Neural processing letters》 |2020年第2期|1445-1464|共20页
  • 作者单位

    State Key Laboratory of Synthetical Automation for Process Industries College of Information Science and Engineering Northeastern University Shenyang 110819 China;

    State Key Laboratory of Synthetical Automation for Process Industries College of Information Science and Engineering Northeastern University Shenyang 110819 China;

    State Key Laboratory of Synthetical Automation for Process Industries College of Information Science and Engineering Northeastern University Shenyang 110819 China;

    State Key Laboratory of Synthetical Automation for Process Industries College of Information Science and Engineering Northeastern University Shenyang 110819 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semi-supervised; Fuzzy min-max neural network; Data classification;

    机译:半监督;模糊最大神经网络;数据分类;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号