首页> 外文期刊>Neural processing letters >Evolving Fuzzy Min-Max Neural Network Based Decision Trees for Data Stream Classification
【24h】

Evolving Fuzzy Min-Max Neural Network Based Decision Trees for Data Stream Classification

机译:基于进化模糊最小-最大神经网络的决策树用于数据流分类

获取原文
获取原文并翻译 | 示例

摘要

Learning from data streams is a challenging task which demands a learning algorithm with several high quality features. In addition to space complexity and speed requirements needed for processing the huge volume of data which arrives at high speed, the learning algorithm must have a good balance between stability and plasticity. This paper presents a new approach to induce incremental decision trees on streaming data. In this approach, the internal nodes contain trainable split tests. In contrast with traditional decision trees in which a single attribute is selected as the split test, each internal node of the proposed approach contains a trainable function based on multiple attributes, which not only provides the flexibility needed in the stream context, but also improves stability. Based on this approach, we propose evolving fuzzy min-max decision tree (EFMMDT) learning algorithm in which each internal node of the decision tree contains an evolving fuzzy min-max neural network. EFMMDT splits the instance space non-linearly based on multiple attributes which results in much smaller and shallower decision trees. The extensive experiments reveal that the proposed algorithm achieves much better precision in comparison with the state-of-the-art decision tree learning algorithms on the benchmark data streams, especially in the presence of concept drift.
机译:从数据流中学习是一项具有挑战性的任务,需要具有几种高质量功能的学习算法。除了处理高速处理的大量数据所需的空间复杂性和速度要求外,学习算法还必须在稳定性和可塑性之间取得良好的平衡。本文提出了一种在流数据上引入增量决策树的新方法。在这种方法中,内部节点包含可训练的拆分测试。与传统的决策树不同,在传统决策树中,选择单个属性作为拆分测试,该方法的每个内部节点都包含基于多个属性的可训练功能,这不仅提供了流上下文所需的灵活性,而且还提高了稳定性。基于这种方法,我们提出了一种进化模糊最小-最大决策树(EFMMDT)学习算法,其中决策树的每个内部节点都包含一个进化模糊最小-最大神经网络。 EFMMDT基于多个属性非线性分割实例空间,从而导致决策树更小,更浅。大量的实验表明,与基准数据流上最新的决策树学习算法相比,所提出的算法具有更高的精度,尤其是在存在概念漂移的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号