首页> 外文期刊>Intelligent data analysis >Fuzzy min-max neural network based decision trees
【24h】

Fuzzy min-max neural network based decision trees

机译:基于模糊最小-最大神经网络的决策树

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new decision tree learning algorithm, fuzzy min-max decision tree (FMMDT) based on fuzzy min-max neural networks. In contrast with traditional decision trees in which a single attribute is selected as the splitting test, the internal nodes of the proposed algorithm contain a fuzzy min-max neural network. In the proposed learning algorithm, the flexibility inherent in the fuzzy logic and the computational efficiency of the min-max neural networks are combined in the decision tree learning framework. FMMDT splits the feature space non-linearly based on multiple attributes which provides not only conceptually more insightful splits but also decision trees with smaller size and depth. The decision trees resulted from the FMMDT learning algorithm have a non-traditional architecture, which enables determining the class label of the instances as early as possible. Moreover, FMMDT creates decision trees which are interpretable by the domain expert. It is shown experimentally that the decision trees resulted from the proposed FMMDT learning algorithm achieve the highest accuracy and the lowest size and depth in comparison with C4.5, BFTree, SimpleCart and NBTree on the most commonly used UCI data sets. Moreover, the experiments reveal that FMMDT creates decision trees with stable structure.
机译:本文提出了一种新的决策树学习算法,即基于模糊最小-最大神经网络的模糊最小-最大决策树(FMMDT)。与传统的决策树相比,传统的决策树选择单个属性作为分裂测试,该算法的内部节点包含一个模糊的最小-最大神经网络。在提出的学习算法中,将模糊逻辑固有的灵活性和最小-最大神经网络的计算效率结合到了决策树学习框架中。 FMMDT基于多个属性对特征空间进行非线性拆分,这不仅在概念上提供了更具洞察力的拆分方式,而且还提供了尺寸和深度较小的决策树。由FMMDT学习算法得到的决策树具有非传统架构,该架构使得能够尽早确定实例的类标签。此外,FMMDT创建决策树,该决策树可由领域专家解释。实验表明,与最常用的UCI数据集上的C4.5,BFTree,SimpleCart和NBTree相比,所提出的FMMDT学习算法生成的决策树实现了最高的准确性以及最低的大小和深度。此外,实验表明,FMMDT可以创建结构稳定的决策树。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号