首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Genetic algorithm-based neural fuzzy decision tree for mixed scheduling in ATM networks
【24h】

Genetic algorithm-based neural fuzzy decision tree for mixed scheduling in ATM networks

机译:基于遗传算法的ATM网络混合调度神经模糊决策树

获取原文
获取原文并翻译 | 示例

摘要

Future broadband integrated services networks based on asynchronous transfer mode (ATM) technology are expected to support multiple types of multimedia information with diverse statistical characteristics and quality of service (QoS) requirements. To meet these requirements, efficient scheduling methods are important for traffic control in ATM networks. Among general scheduling schemes, the rate monotonic algorithm is simple enough to be used in high-speed networks, but does not attain the high system utilization of the deadline driven algorithm. However, the deadline driven scheme is computationally complex and hard to implement in hardware. The mixed scheduling algorithm is a combination of the rate monotonic algorithm and the deadline driven algorithm; thus it can provide most of the benefits of these two algorithms. In this paper, we use the mixed scheduling algorithm to achieve high system utilization under the hardware constraint. Because there is no analytic method for schedulability testing of mixed scheduling, we propose a genetic algorithm-based neural fuzzy decision tree (GANFDT) to realize it in a real-time environment. The GANFDT combines a GA and a neural fuzzy network into a binary classification tree. This approach also exploits the power of the classification tree. Simulation results show that the GANFDT provides an efficient way of carrying out mixed scheduling in ATM networks.
机译:预期基于异步传输模式(ATM)技术的未来宽带集成服务网络将支持具有各种统计特征和服务质量(QoS)要求的多种类型的多媒体信息。为了满足这些要求,有效的调度方法对于ATM网络中的流量控制很重要。在一般的调度方案中,速率单调算法很简单,可以在高速网络中使用,但是不能达到期限驱动算法的高系统利用率。但是,期限驱动方案在计算上很复杂,并且很难在硬件中实现。混合调度算法是速率单调算法和截止期限驱动算法的结合。因此,它可以提供这两种算法的大部分优势。在本文中,我们使用混合调度算法在硬件约束下实现较高的系统利用率。由于没有用于混合调度的可调度性测试的解析方法,因此我们提出了一种基于遗传算法的神经模糊决策树(GANFDT)在实时环境中实现。 GANFDT将GA和神经模糊网络组合成二叉分类树。这种方法还利用了分类树的功能。仿真结果表明,GANFDT提供了一种在ATM网络中进行混合调度的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号