首页> 外文期刊>Neurocomputing >Continuous genetic algorithm-based fuzzy neural network for learning fuzzy IF-THEN rules
【24h】

Continuous genetic algorithm-based fuzzy neural network for learning fuzzy IF-THEN rules

机译:基于连续遗传算法的模糊神经网络,用于学习模糊IF-THEN规则

获取原文
获取原文并翻译 | 示例

摘要

This study proposes a fuzzy neural network (FNN) that can process both fuzzy inputs and outputs. The continuous genetic algorithm (CGA) is employed to enhance its performance. Both the simulation and real-world problem results show that the proposed CGA-based FNN can obtain the relationship between fuzzy inputs and outputs. CGA can not only shorten the training time but also increase the accuracy for the FNN.
机译:这项研究提出了一种可同时处理模糊输入和输出的模糊神经网络(FNN)。连续遗传算法(CGA)用于增强其性能。仿真和实际问题结果均表明,所提出的基于CGA的FNN可以获得模糊输入与输出之间的关系。 CGA不仅可以缩短训练时间,而且可以提高FNN的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号